Skip to main content
Log in

Kinetics of charged particles in a high-voltage gas discharge in a nonuniform electrostatic field

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A high-voltage gas discharge is of interest as a possible means of generating directed flows of low-temperature plasma in the off-electrode space distinguished by its original features [1–4]. We propose a model for calculating the trajectories of charges particles in a high-voltage gas discharge in nitrogen at a pressure of 0.15 Torr existing in a nonuniform electrostatic field and the strength of this field. Based on the results of our calculations, we supplement and refine the extensive experimental data concerning the investigation of such a discharge published in [1, 2, 5–8]; good agreement between the theory and experiment has been achieved. The discharge burning is initiated and maintained through bulk electron-impact ionization and ion–electron emission. We have determined the sizes of the cathode surface regions responsible for these processes, including the sizes of the axial zone involved in the discharge generation. The main effect determining the kinetics of charged particles consists in a sharp decrease in the strength of the field under consideration outside the interelectrode space, which allows a free motion of charges with specific energies and trajectories to be generated in it. The simulation results confirm that complex electrode systems that allow directed plasma flows to be generated at a discharge current of hundreds or thousands of milliamperes and a voltage on the electrodes of 0.3–1 kV can be implemented in practice [3, 9, 10].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. L. Kazanskii and V. A. Kolpakov, Formation of Optical Microrelief in Off-Electrode Plasma of High- Voltage Gas Discharge (Radio Svyaz’, Moscow, 2009) [in Russian].

    Google Scholar 

  2. V. A. Kolpakov, A. I. Kolpakov, and V. V. Podlipnov, Tech. Phys. 58, 505 (2013).

    Article  Google Scholar 

  3. N. L. Kazanskiy, V. A. Kolpakov, and V. V. Podlipnov, Vacuum 101, 291 (2014).

    Article  ADS  Google Scholar 

  4. M. A. Markushin, V. A. Kolpakov, S. V. Krichevskii, and A. I. Kolpakov, Tech. Phys. 60, 376 (2015).

    Article  Google Scholar 

  5. I. V. Vagner, E. I. Bolgov, V. F. Grakun, et al., Sov. Tech. Phys. 19, 1042 (1974).

    Google Scholar 

  6. V. A. Kolpakov, Russ. Microelectron. 31, 366 (2002).

    Article  Google Scholar 

  7. N. L. Kazanskii, A. I. Kolpakov, and V. A. Kolpakov, Russ. Microelectron. 33, 169 (2004).

    Article  Google Scholar 

  8. N. L. Kazanskii and V. A. Kolpakov, Tech. Phys. 54, 1284 (2009).

    Article  Google Scholar 

  9. V. A. Kolpakov, A. I. Kolpakov, and S. V. Krichevskii, Instrum. Exp. Tech. 57, 147 (2014).

    Article  Google Scholar 

  10. V. A. Kolpakov, A. I. Kolpakov, and S. V. Krichevskii, Instrum. Exp. Tech. 58, 683 (2015).

    Article  Google Scholar 

  11. V. I. Erofeev, Principles Underlying the Development of High-Informative Models of Plasma Kinetics (Sib. Otdel. RAN, Novosibirsk, 2013) [in Russian].

    Google Scholar 

  12. L. D. Tsendin, Phys. Usp. 53, 133 (2010).

    Article  ADS  Google Scholar 

  13. M. Capitelli, C. M. Ferreira, B. F. Gordiets, et al., Plasma Kinetics in Atmospheric Gases (Springer, Berlin, 2000).

    Book  Google Scholar 

  14. N. L. Aleksandrov, S. V. Kindysheva, and I. V. Kochetov, Plasma Sources Sci. Technol. 23, 015017 (2014).

    Article  ADS  Google Scholar 

  15. A. A. Orlikovskii, K. V. Rudenko, and S. N. Averkin, High Energy Chem. 40, 182 (2006).

    Article  Google Scholar 

  16. A. A. Serdobintsev, A. G. Veselov, and O. A. Kiryasova, Semiconductors 42, 486 (2008).

    Article  ADS  Google Scholar 

  17. Qi Wang, Xiangke Wang, Zhifang Chai, et al., Chem. Soc. Rev. 42, 8821 (2013).

    Article  Google Scholar 

  18. V. A. Soifer, Diffractive Nanophotonics (CRC, London, 2014).

    Book  MATH  Google Scholar 

  19. A. L. Aleksandrov and I. V. Schweigert, J. Exp. Theor. Phys. 110, 845 (2010).

    Article  ADS  Google Scholar 

  20. M. G. Putrya, Plasma Methods of Three-Dimensional VLSI Structure Forming (MIET, Moscow, 2005) [in Russian].

    Google Scholar 

  21. N. V. Gavrilov, A. S. Mamaev, S. A. Plotnikov, et al., Surf. Coat. Technol. 204, 4018 (2010).

    Article  Google Scholar 

  22. X. L. Deng, A. Yu. Nikiforov, P. Vanraes, et al., J. Appl. Phys. 113, 023305 (2013).

    Article  ADS  Google Scholar 

  23. A. Y. Kovalgin, A. Boogaard, I. Brunets, et al., Surf. Coat. Technol. 201, 8849 (2007).

    Article  Google Scholar 

  24. N. N. Mirolyubov, M. V. Kostenko, M. L. Levinshtein, et al., Calculation Methods of Electrostatic Fields (Vyssh. Shkola, Moscow, 1963) [in Russian].

    Google Scholar 

  25. A. A. Kudryavtsev, A. S. Smirnov, and L. D. Tsendin, Physics of Glow Discharge (Lan’, St. Peterburg, 2010) [in Russian].

    Google Scholar 

  26. E. D. Lozanskii and O. B. Firsov, The Theory of the Spark (Atomizdat, Moscow, 1975) [in Russian].

    Google Scholar 

  27. Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Nauka, Moscow, 1992).

    Google Scholar 

  28. L. A. Artsimovich and S. Yu. Luk’yanov, Motion of Charged Particles in Electric and Magnetic Fields (Nauka, Moscow, 1972; Mir, Moscow, 1980).

    Google Scholar 

  29. V. A. Nikonenko, Mathematic Simulation of Technological Processes (MISiS, Moscow, 2001) [in Russian].

    Google Scholar 

  30. L. A. Artsimovich, Elementary Plasma Physics (Moscow, Atomizdat, 1963; Blaisdell, New York, 1965).

    Google Scholar 

  31. V. A. Kolpakov, Fiz. Khim. Obrab. Mater., No. 5, 41 (2006).

    Google Scholar 

  32. V. A. Kolpakov, Fiz. Khim. Obrab. Mater., No. 1, 53 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kolpakov.

Additional information

Original Russian Text © V.A. Kolpakov, S.V. Krichevskii, M.A. Markushin, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 1, pp. 189–198.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolpakov, V.A., Krichevskii, S.V. & Markushin, M.A. Kinetics of charged particles in a high-voltage gas discharge in a nonuniform electrostatic field. J. Exp. Theor. Phys. 124, 164–171 (2017). https://doi.org/10.1134/S106377611613015X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611613015X

Navigation