Skip to main content
Log in

The formation of correlated states and optimization of the tunnel effect for low-energy particles under nonmonochromatic and pulsed action on a potential barrier

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider peculiarities of the formation of a coherent correlated state (CCS) of a low-energy particle under frequency modulation of parameters of a harmonic oscillator that contains this particle by a broadband nonmonochromatic or asymmetric pulsed action. It is shown that in the case of modulation with frequency-normalized intensity, the maximum efficiency of CCS formation corresponds to a narrow-band action, while broadband modulation is optimal for the action with a constant spectral density. As in the case of monochromatic modulation, the maximum correlation coefficient, |r|max, under the nonmonochromatic action corresponds to parametric resonance at frequency Ω ≈ 2ω0. Under a pulsed action, the maximum efficiency of CCS formation and, hence, the maximum probability of the tunnel effect, correspond to pulsed modulation with a short leading edge and a long trailing edge. In particular, under the action of a pulsed magnetic field with an amplitude of 10 kOe and the leading edge duration of 2 × 10–7 s on a gas with deuterium ions, a CCS can be formed with the correlation coefficient |r|max ≈ 0.9998, for which the tunneling effect probability under the dd interaction at temperature T ≈ 300–500 K increases from D r = 0 ≈ 10−80 to \({D_{|r{|_{\max }} = 0.9998}} \approx 0.1\). This process can occur in a gas with particle number density n < n cr ≈ 1017 cm−3. The method of CCS formation makes it possible to explain the results of an experiment in which substantial isotope changes were detected when a pulsed electric current and magnetic-field generation occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Levi, E. Foschi, B. Höistad, R. Pettersson, L. Tegnér, and H. Essén, Lugano Report, October 6, 2014. Observation of Abundant Heat Production from a Reactor Device and of Isotopic Changes in the Fuel. http://www.sifferkoll.se/sifferkoll/wp-content/uploads/2014/10/LuganoReport-Submit.pdf.

  2. E. Schrodinger, Ber. Kgl. Akad. Wiss., Berlin 24, 296 (1930).

    Google Scholar 

  3. H. P. Robertson, Phys. Rev. A: At., Mol., Opt. Phys. 35, 667 (1930).

    Google Scholar 

  4. V. Dodonov, E. Kurmishev, and V. Man’ko, Phys. Lett. A 79, 150 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  5. V. V. Dodonov and V. I. Man’ko, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR 183, 71 (1987).

    MathSciNet  Google Scholar 

  6. V. V. Dodonov, A. V. Klimov, and V. I. Man’ko, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR 200, 56 (1991).

    MathSciNet  Google Scholar 

  7. V. V. Dodonov, A. B. Klimov, and V. I. Man’ko, Phys. Lett. A 220, 41 (1996).

    Article  ADS  Google Scholar 

  8. V. I. Vysotskii and S. V. Adamenko, Tech. Phys. 55 (1), 613 (2010).

    Article  Google Scholar 

  9. V. I. Vysotskii, M. V. Vysotskyy, and S. V. Adamenko, J. Exp. Theor. Phys. 114 (2), 243 (2012).

    Article  ADS  Google Scholar 

  10. V. I. Vysotskii, S. V. Adamenko, and M. V. Vysotskyy, J. Exp. Theor. Phys. 115 (4), 551 (2012).

    Article  ADS  Google Scholar 

  11. V. I. Vysotskii and M. V. Vysotskyy, Eur. Phys. J. A 49, 99 (2013).

    Article  ADS  Google Scholar 

  12. V. I. Vysotskii, S. V. Adamenko, and M. V. Vysotskyy, Ann. Nucl. Energy 62, 618 (2013).

    Article  Google Scholar 

  13. V. I. Vysotskii and M. V. Vysotskyy, J. Exp. Theor. Phys. 118 (4), 534 (2014).

    Article  ADS  Google Scholar 

  14. V. V. Dodonov and A. V. Dodonov, J. Russ. Laser Res. 35, 39 (2014).

    Article  Google Scholar 

  15. A. V. Dodonov and V. V. Dodonov, Phys. Lett. A 35, 1071 (2014).

    Article  MathSciNet  ADS  Google Scholar 

  16. V. I. Vysotskii and M. V. Vysotskii, J. Exp. Theor. Phys. 120 (2), 246 (2015).

    Article  ADS  Google Scholar 

  17. V. I. Vysotskii and M. V. Vysotskyy, Curr. Sci. 108, 524 (2015).

    Google Scholar 

  18. L. Maccone and P. K. Arun, Phys. Rev. Lett. 113, 260401 (2014).

    Article  ADS  Google Scholar 

  19. C. Anastopoulos and J. J. Halliwell, Phys. Rev. D: Part. Fields 51, 6870 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  20. J. Halliwell and A. Zoupas, Phys. Rev. D: Part. Fields 52, 7294 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  21. V. I. Vysotskii, S. V. Adamenko, and M. V. Vysotskii, J. Surf. Invest. 6 (2), 369 (2012).

    Article  Google Scholar 

  22. V. I. Vysotskii, M. V. Vysotskyy, and S. Bartalucci, Ann. Nucl. Energy 62, 613 (2013).

    Article  Google Scholar 

  23. V. A. Bazylev and N. K. Zhevago, Radiation of Fast Charged Particles in Matter and External Fields (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  24. M. V. Vysotskyy and V. I. Vysotskii, Nucl. Instrum. Methods Phys. Res., Sect. B 252, 75 (2006).

    Article  ADS  Google Scholar 

  25. V. N. Chernega, J. Russ. Laser Res. 34, 168 (2013).

    Article  Google Scholar 

  26. V. I. Vysotskii and A. A. Kornilova, Ann. Nucl. Energy 62, 626 (2013).

    Article  Google Scholar 

  27. V. I. Vysotskii and A. A. Kornilova, Curr. Sci. 108, 636 (2015).

    Google Scholar 

  28. Controlled Nucleosynthesis: Breakthroughs in Experiment and Theory, Ed. by S. Adamenko, F. Selleri, and Alwyn van der Merwe (Springer-Verlag, Berlin, 2007).

  29. S. V. Adamenko and V. I. Vysotskii, Found. Phys. 34, 1801 (2004).

    Article  ADS  Google Scholar 

  30. S. V. Adamenko and V. I. Vysotskii, Found. Phys. Lett. 17, 203 (2004).

    Article  MATH  Google Scholar 

  31. S. V. Adamenko and V. I. Vysotskii, Found. Phys. Lett. 19, 21 (2006).

    Article  Google Scholar 

  32. A. S. Agapov, V. A. Kalenskii, Ch. B. Kaitusov, A. V.Malyshev, G. V. Ryabov, A. V. Steblevskii, L. I.Urutskoev, and D. V. Filippov, in Proceedings of the 13th Russian LENTChE Conference, Dagomys, Sochi, Russia, 2004.

  33. L. I. Urutskoev, V. I. Liksonov, and V. G. Tsinoev, Ann. Found. Louis Broglie 27, 701 (2002).

    Google Scholar 

  34. V. V. Krymskii and V. F. Balakirev, Dokl. Phys. Chem. 385 (4–6), 197 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vysotskii.

Additional information

Original Russian Text © V.I. Vysotskii, M.V. Vysotskyy, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 4, pp. 643–657.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysotskii, V.I., Vysotskyy, M.V. The formation of correlated states and optimization of the tunnel effect for low-energy particles under nonmonochromatic and pulsed action on a potential barrier. J. Exp. Theor. Phys. 121, 559–571 (2015). https://doi.org/10.1134/S1063776115100222

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115100222

Keywords

Navigation