Skip to main content
Log in

Stationary solutions of the Dirac equation in the gravitational field of a charged black hole

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A stationary solution of the Dirac equation in the metric of a Reissner-Nordström black hole has been found. Only one stationary regular state outside the black hole event horizon and only one stationary regular state below the Cauchy horizon are shown to exist. The normalization integral of the wave functions diverges on both horizons if the black hole is non-extremal. This means that the solution found can be only the asymptotic limit of a nonstationary solution. In contrast, in the case of an extremal black hole, the normalization integral is finite and the stationary regular solution is physically self-consistent. The existence of quantum levels below the Cauchy horizon can affect the final stage of Hawking black hole evaporation and opens up the fundamental possibility of investigating the internal structure of black holes using quantum tunneling between external and internal states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Fock, Z. Phys. 57, 261 (1929); V. Fock and D. Iwanenko, Z. Phys. 54, 798 (1929).

    Article  ADS  MATH  Google Scholar 

  2. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972; Platon, Volgograd, 2000).

    Google Scholar 

  3. D. R. Brill and J. A. Wheeler, Rev. Mod. Phys. 29, 465 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. B. Mukhopadhyay, Classical Quantum Gravity 17, 2017 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. V. A. Berezin, Preprint: Neutrino Forces and the Schwarzschild Metric (Institute for Nuclear Research, Academy of Sciences of the Soviet Union, Moscow, 1975).

    Google Scholar 

  6. A. Burinskii, Gravitation Cosmol. 14, 109 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. N. Deruelle and R. Ruffini, Phys. Lett. B 52, 437 (1974).

    Article  ADS  Google Scholar 

  8. I. M. Ternov, V. R. Khalilov, G. A. Chizhov, and A. B. Gaina, Sov. Phys. J. 21(9), 1200 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  9. L. A. Kofman, Phys. Lett. A 87, 281 (1982).

    Article  ADS  Google Scholar 

  10. M. Soffel, B. Muller, and W. Greiner, J. Phys. A: Math. Gen. 10, 551 (1977).

    Article  ADS  Google Scholar 

  11. I. M. Ternov, A. B. Gaina, and G. A. Chizhov, Sov. Phys. J. 23(8), 695 (1980).

    Article  MATH  Google Scholar 

  12. D. V. Gal’tsov, G. V. Pomerantseva, and G. A. Chizhov, Sov. Phys. J. 26(8), 743 (1983).

    Article  Google Scholar 

  13. M. V. Gorbatenko and V. P. Neznamov, arXiv:1205.4348 [gr-qc].

  14. M. A. Vronsky, M. V. Gorbatenko, N. S. Kolesnikov, V. P. Neznamov, E. Yu. Popov, and I. I. Safronov, arXiv:1301.7595 [gr-qc].

  15. V. Dzhunushaliev, arXiv:1202.5100 [gr-qc].

  16. S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, Oxford, 1983; Mir, Moscow, 1986), Part 1, Chap. 5.

    MATH  Google Scholar 

  17. V. I. Dokuchaev, Classical Quantum Gravity 28, 235015 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  18. J. Bičák, Z. Stuchlík, and V. Balek, Bull. Astron. Inst. Czech. 40, 65 (1989); J. Bičák, Z. Stuchlík, and V. Balek, Bull. Astron. Inst. Czech. 40, 133 (1989).

    ADS  MATH  Google Scholar 

  19. E. Hackmann, C. Lämmerzahl, V. Kagramanova, and J. Kunz, Phys. Rev. D: Part. Fields 81, 044020 (2010).

    Article  ADS  Google Scholar 

  20. S. Grunau and V. Kagramanova, Phys. Rev. D: Part. Fields 83, 044009 (2011).

    Article  ADS  Google Scholar 

  21. M. Olivares, J. Saavedra, C. Leiva, and J. R. Villanueva, arXiv:1101.0748 [gr-qc].

  22. B. J. Carr, J. H. Gilbert, and J. E. Lidsey, Phys. Rev. D: Part. Fields 50, 4853 (1994).

    Article  ADS  Google Scholar 

  23. A. D. Dolgov, P. D. Naselsky, and I. D. Novikov, arXiv:astro-ph/0009407.

  24. B. J. Carr, Lect. Notes Phys. 631, 301 (2003); B. J. Carr, arXiv:astro-ph/0310838.

    Article  MathSciNet  ADS  Google Scholar 

  25. M. A. Markov, Sov. Phys. JETP 24(3), 584 (1966).

    ADS  Google Scholar 

  26. G. E. Volovik, JETP Lett. 69(9), 705 (1999).

    Article  ADS  Google Scholar 

  27. Y. Miao, Z. Xue, and S. Zhang, Europhys. Lett. 96, 10008 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Dokuchaev.

Additional information

Original Russian Text © V.I. Dokuchaev, Yu.N. Eroshenko, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 144, No. 1, pp. 85–91.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dokuchaev, V.I., Eroshenko, Y.N. Stationary solutions of the Dirac equation in the gravitational field of a charged black hole. J. Exp. Theor. Phys. 117, 72–77 (2013). https://doi.org/10.1134/S1063776113080049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113080049

Keywords

Navigation