Skip to main content
Log in

Commensurate and incommensurate states of a spin density wave in a quasi-two-dimensional system with an anisotropic energy spectrum in an external magnetic field of arbitrary direction relative to magnetization

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A theory of thermodynamic properties of a spin density wave (SDW) in a quasi-two-dimensional system (with a preset impurity concentration x) is constructed. We choose an anisotropic dispersion relation for the electron energy and assume that external magnetic field H has an arbitrary direction relative to magnetic moment M Q . The system of equations defining order parameters M z Q , M σ Q , M z , and Mσ is constructed and transformed with allowance for the Umklapp processes. Special cases when HM Q and HM Q (H Z Hσ = 0) are considered in detail as well as cases of weak fields H of arbitrary direction. The condition for the transition of the system to the commensurate and incommensurate states of the SDW is analyzed. The concentration dependence of magnetic transition temperature T M is calculated, and the components of the order parameter for the incommensurate phase are determined. The phase diagram (T,~x) is constructed. The effect of the magnetic field on magnetic transition temperature T M is analyzed for H Z Hσ = 0, and longitudinal magnetic susceptibility χ‖ is calculated; this quantity demonstrates the temperature dependence corresponding to a system with a gap for x < x c and to a gapless state for x > x c . In the immediate vicinity of the critical impurity concentration (xx c ), the temperature dependence of the magnetic susceptibility acquires a local maximum. The effect of anisotropy of the electron energy spectrum on the investigated physical quantities is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Article  Google Scholar 

  2. Xiyu Zhu, Huong Vang, Lu Fang, Gang Mu, and Hai-Hu Wen, Supercond. Sci. Technol. 21, 105001 (2008).

    Article  ADS  Google Scholar 

  3. M. V. Sadovskii, Phys.-Usp. 51(12), 1201 (2008).

    Article  ADS  Google Scholar 

  4. A. L. Ivanovskii, Phys.-Usp. 51(12), 1229 (2008).

    Article  ADS  Google Scholar 

  5. YU. A. Izyumov and E. Z. Kurmaev, Phys.-Usp. 51(12), 1261 (2008).

    Article  ADS  Google Scholar 

  6. Kenji Ishida, Yusuke Nakai, and Hideo Hasono, J. Phys. Soc. Jpn. 78, 062001 (2009).

    Article  ADS  Google Scholar 

  7. V. A. Moskalenko, M. E. Palistrant, and V. M. Vakalyuk, Sov. Phys.—Usp. 34(8), 717 (1991).

    Article  ADS  Google Scholar 

  8. V. A. Moskalenko, L. Z. Kon, and M. E. Palistrant, Low-Temperature Properties of Metals with Specific Features of the Band Spectrum (Shtiintsa, Chisinau, 1989) [in Russian].

    Google Scholar 

  9. V. A. Moskalenko, L. Z. Kon, and M. E. Palistrant, Teoria Supraconductibilit ii Multiband (Tehnica, Bucharest, Romania, 2008) [in Romanian]; http:www.theory/V.Barsan/eboks//Mosc.-2008.

    Google Scholar 

  10. M. E. Palistrant, Condens. Matter Phys. 12, 677 (2009).

    Article  Google Scholar 

  11. M. E. Palistrant and L. Z. Kon, Ukr. J. Phys. 55, 44 (2010).

    Google Scholar 

  12. M. E. Palistrant, and V. A. Ursu, JETP 104(1), 51 (2007); M. E. Palistrant, and V. A. Ursu, J. Supercond. Novel Magn. 21 (3), 171 (2008).

    Article  ADS  Google Scholar 

  13. M. E. Palistrant, J. Supercond. Novel Magn. 23, 1427 (2010).

    Article  Google Scholar 

  14. V. Raghu, Hiao-Liang Oi, Chao-Xing Liu, D. J. Scalapino, and Shou-Cheng Zhang, Phys. Rev. B: Condens. Matter 77, 220503(R) (2008); arXiv:0804.1113.

    Article  ADS  Google Scholar 

  15. C. Cao, P. J. Hirschfeld, and H. P. Cheng, Phys. Rev. B: Condens. Matter 77, 2205060(R) (2008).

    Google Scholar 

  16. M. M. Korshunov and I. Eremin, arXiv:0804.1793.

  17. V. Barzykin and L. P. Gor’kov, JETP Lett. 88(2), 131 (2008).

    Article  ADS  Google Scholar 

  18. M. G. Vavilov, A. V. Chubukov, and A. B. Vorontsov, Supercond. Sci. Technol. 23, 054011 (2010); M. G. Vavilov, A. V. Chubukov, and A. B. Vorontsov, arXiv:0912.3556.

    Article  ADS  Google Scholar 

  19. A. B. Vorontsov, A. V. Vavilov, and A. V. Chubukov, Phys. Rev. B: Condens. Matter 81, 174538 (2010); arXiv:1003.2389v1.

    Article  ADS  Google Scholar 

  20. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, JETP Lett. 91(10), 518 (2010); E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, arXiv:1004.0801v1.

    Article  ADS  Google Scholar 

  21. M. K. Forthaus, K. Sengupta, O. Heyer, N. E. Christensen, A. Svane, K. Syassen, D. I. Khomskii, T. Lorenz, and M. M. Abd-Elmeguid, Phys. Rev. Lett. 105, 157001 (2010); M. K. Forthaus, K. Sengupta, O. Heyer, N. E. Christensen, A. Svane, K. Syassen, D. I. Khomskii, T. Lorenz, and M. M. Abd-Elmeguid, arXiv:1009.3787v1.

    Article  ADS  Google Scholar 

  22. E. E. Rodriguez, C. Stock, K. Krycka, C. F. Majkrzak, K. Kirshenbaum, N. P. Butch, S. R. Shanta, J. Paglione, and M. A. Green, Phys. Rev. B: Condens. Matter 83, 134438 (2011); E. E. Rodriguez, C. Stock, K. Krycka, C. F. Majkrzak, K. Kirshenbaum, N. P. Butch, S. R. Shanta, J. Paglione, and M. A. Green, arXiv:1012.5311.

    Article  ADS  Google Scholar 

  23. Jiangping Hu, Bao Xu, Wuming Liu, Ningning Hao, and Yupeng Wang, Phys. Rev. B: Condens. Matter 85, 144403 (2012); Jiangping Hu, Bao Xu, Wuming Liu, Ningning Hao, and Yupeng Wang, arXiv:1106.5169.

    Article  ADS  Google Scholar 

  24. M. Klansjek, M. Horvatic, C. Berthier, H. Mayaffre, E. Canevet, B. Grenier, P. Lejay, and E. Orignac, arXiv:1202.6374.

  25. Shuai Jiang, Hui Xing, Guofang Xuan, Zhi Ren, Cao Wang, Zhu-an Xu, and Guanghan Cao, Phys. Rev. B: Condens. Matter 80, 184514 (2009); Shuai Jiang, Hui Xing, Guofang Xuan, Zhi Ren, Cao Wang, Zhu-an Xu, and Guanghan Cao, arXiv:0911.0273.

    Article  ADS  Google Scholar 

  26. J. J. Ying, J. C. Liang, X. G. Luo, X. F. Wang, Y. J. Yan, M. Zhang, A. F. Wang, Z. J. Xiang, G. J. Ye, P. Cheng, and X. H. Chen, Phys. Rev. B: Condens. Matter 85, 144514 (2012); J. J. Ying, J. C. Liang, X. G. Luo, X. F.Wang, Y. J. Yan, M. Zhang, A. F. Wang, Z. J. Xiang, G. J. Ye, P. Cheng, and X. H. Chen, arXiv:1202.3589.

    Article  ADS  Google Scholar 

  27. Huiqian Luo, Rui Zhang, M. Laver, Zahra Yamani, Meng Wang, Xingye Lu, Miaoyin Wang, Yanchao Chen, Shiliang Li, Sung Chang, Jeffrey W. Lynn, and Pengcheng Dai, arXiv:1203.2759v1.

  28. R. Kh. Timerov, Sov. Phys. JETP 45(6), 1214 (1977).

    ADS  Google Scholar 

  29. M. C. Leung, Phys. Rev. B: Solid State 11, 4272 (1975).

    Article  ADS  Google Scholar 

  30. M. E. Palistrant and I. V. Pédure, Phys. Lett. A 111, 445 (1985); M. E. Palistrant and I. V. Pédure, Theor. Math. Phys. 62 (1), 78 (1985).

    Article  ADS  Google Scholar 

  31. Yu. A. Kopaev, in Some Problems of Superconductivity, Ed. by N. G. Basov (Nauka, Moscow, 1975), Vol. 86, p. 3 [in Russian].

  32. M. E. Palistrant and V. M. Vakalyuk, Sov. J. Low Temp. Phys. 18(8), 597 (1992).

    Google Scholar 

  33. M. E. Palistrant and F. G. Kochorbe, Izv. Akad. Nauk Mold. SSR, Fiz. Tekh. 2(5), 7 (1991).

    Google Scholar 

  34. D. F. Digor and M. E. Palistrant, Mold. J. Phys. Sci. 9(3–4), 311 (2010).

    Google Scholar 

  35. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Fizmatgiz, Moscow, 1962; Academic, New York, 1980).

    MATH  Google Scholar 

  36. M. E. Palistrant, Theor. Math. Phys. 168(3), 1290 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Palistrant.

Additional information

Original Russian Text © M.E. Palistrant, V.A. Ursu, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 143, No. 4, pp. 735–751.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palistrant, M.E., Ursu, V.A. Commensurate and incommensurate states of a spin density wave in a quasi-two-dimensional system with an anisotropic energy spectrum in an external magnetic field of arbitrary direction relative to magnetization. J. Exp. Theor. Phys. 116, 641–656 (2013). https://doi.org/10.1134/S1063776113040080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113040080

Keywords

Navigation