Skip to main content
Log in

Decay of multispin multiple-quantum coherent states in the NMR of a solid and the stabilization of their intensity profile with time

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Variations, experimentally observed in [14], in the intensity profiles of multiple-quantum (MQ) coherences in the presence of two special types of perturbations are explained on the basis of the theory, earlier developed by the authors, of the growth of the effective size of correlated clusters (the number of correlated spins) and the relaxation of MQ coherent states [23]. The intensity and the character of perturbation were controlled by the experimenters. It is shown that the observed stabilization of profiles with time is not associated with the stabilization of the cluster size. Quite the contrary, a cluster of correlated spins monotonically grows, while the observed variations in the intensity profile and its stabilization with time are attributed to the dependence of the decay rate of an MQ coherence on its order (its position in the MQ spectrum). The results of the theory are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon, Oxford, 1987; Mir, Moscow, 1990).

    Google Scholar 

  2. M. Munovitz and A. Pines, Adv. Chem. Phys. 6, 1 (1987).

    Google Scholar 

  3. J. Baum, M. Munovitz, A. N. Garroway, and A. Pines, J. Chem. Phys. 83, 2015 (1985).

    Article  ADS  Google Scholar 

  4. V. L. Bodneva and A. A. Lundin, JETP 108(6), 992 (2009).

    Article  ADS  Google Scholar 

  5. P.-K. Wang, J.-P. Ansermet, S. L. Rudaz, Z. Wang, S. Shore, C. P. Slichter, and J. H. Sinfelt, Science (Washington) 234, 35 (1986).

    Article  ADS  Google Scholar 

  6. J. Baum and A. Pines, J. Am. Chem. Soc. 108, 7447 (1986).

    Article  Google Scholar 

  7. S. I. Doronin, A. V. Fedorova, E. B. Fel’dman, and A. I. Zenchuk, J. Chem. Phys. 131, 104109 (2009).

    Article  ADS  Google Scholar 

  8. R. H. Schneder and H. Schmiedel, Phys. Lett. A 30, 298 (1969).

    Article  ADS  Google Scholar 

  9. W. K. Rhim, A. Pines, and J. S. Waugh, Phys. Rev. B: Solid State 3, 684 (1971).

    Article  ADS  Google Scholar 

  10. H. G. Krojanski and D. Suter, Phys. Rev. Lett. 93, 090501 (2004).

    Article  ADS  Google Scholar 

  11. H. G. Krojanski and D. Suter, Phys. Rev. Lett. 97, 150503 (2006).

    Article  ADS  Google Scholar 

  12. H. G. Krojanski and D. Suter, Phys. Rev. A: At., Mol., Opt. Phys. 74, 062319 (2006).

    Article  ADS  Google Scholar 

  13. M. S. Lovric, H. G. Krojanski, and D. Suter, Phys. Rev. A: At., Mol., Opt. Phys. 75, 042305 (2007).

    Article  ADS  Google Scholar 

  14. G. A. Alvarez and D. Suter, Phys. Rev. Lett. 104, 230403 (2010).

    Article  ADS  Google Scholar 

  15. G. Cho, P. Capprlaro, D. G. Cory, and C. Ramanathan, Phys. Rev. B: Condens. Matter 74, 224434 (2006).

    Article  ADS  Google Scholar 

  16. V. E. Zobov and A. A. Lundin, JETP 103(6), 904 (2006).

    Article  ADS  Google Scholar 

  17. S. I. Doronin, E. B. Fel’dman, and F. I. Zenchuk, J. Chem. Phys. 134, 034102 (2011).

    Article  ADS  Google Scholar 

  18. R. Balesçu, Equilibrium and Non-Equilibrium Statistical Mechanics (Wiley, New York, 1975; Mir, Moscow, 1978), Vol. 2.

    Google Scholar 

  19. W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. P. W. Anderson, Basic Notions of Condensed Matter Physics (Benjamin/Cummings, San Francisco, California, United States, 1984).

    Google Scholar 

  21. P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269 (1953).

    Article  ADS  Google Scholar 

  22. A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961; Inostrannnaya Literatura, Moscow, 1963), Chap. 4.

    Google Scholar 

  23. V. E. Zobov and A. A. Lundin, JETP 112(3), 451 (2011).

    Article  ADS  Google Scholar 

  24. U. Haeberlen and M. Mehring, High Resolution NMR Spectroscopy in Solids (Springer, New York, 1976; Mir, Moscow, 1980).

    Google Scholar 

  25. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Ed. by M. Abramowitz and I. Stegun (Dover, New York, 1965 Nauka, Moscow, 1979).

    Google Scholar 

  26. B. V. Gnedenko, Theory of Probability (Nauka, Moscow, 1988; Gordon and Breach, Amsterdam, 1997).

    MATH  Google Scholar 

  27. G. A. Alvarez and D. Suter, arXiv:1103.4546 [quant-ph].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Zobov.

Additional information

Original Russian Text © V.E. Zobov, A.A. Lundin, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 140, No. 6, pp. 1150–1159.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zobov, V.E., Lundin, A.A. Decay of multispin multiple-quantum coherent states in the NMR of a solid and the stabilization of their intensity profile with time. J. Exp. Theor. Phys. 113, 1006–1014 (2011). https://doi.org/10.1134/S1063776111140111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111140111

Keywords

Navigation