Skip to main content
Log in

Anomalies of magnetoresistance of compounds with atomic clusters RB12 (R = Ho, Er, Tm, Lu)

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The magnetoresistance and magnetization of single-crystal samples of rare-earth dodecaborides RB12 (R = Ho, Er, Tm, Lu) have been measured at low temperatures (1.8–35 K) in a magnetic field of up to 70 kOe. The effect of positive magnetoresistance that obeys the Kohler’s rule Δρ/ρ = f(ρ(0, 300 K)H/ρ(0, T)) is observed for the nonmagnetic metal LuB12. In the magnetic dodecaborides HoB12, ErB12, and TmB12, three characteristic regimes of the magnetoresistance behavior have been revealed: the positive magnetoresistance effect similar to the case of LuB12 is observed at T > 25 K; in the range T N T ≤ 15 K, the magnetoresistance becomes negative and depends quadratically on the external magnetic field; and, finally, upon the transition to the antiferromagnetic phase (T < T N ), the positive magnetoresistance is again observed and its amplitude reaches 150% for HoB12. It has been shown that the observed anomalies of negative magnetoresistance in the paramagnetic phase can be explained within the Yosida model of conduction electron scattering by localized magnetic moments. The performed analysis confirms the formation of spin-polaron states in the 5d band in the vicinity of rare-earth ions in paramagnetic and magnetically ordered phases of RB12 and makes it possible to reveal a number of specific features in the transformation of the magnetic structure of the compounds under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Gabani, I. Bat’ko, K. Flachbart, T. Herrmannsdorfer, R. Konig, Yu. Paderno, and N. Shitsevalova, J. Magn. Magn. Mater. 207, 131 (1999).

    Article  ADS  Google Scholar 

  2. T. Mori and A. Leithe-Jasper, Phys. Rev. B: Condens. Matter 66, 214419 (2002).

    Google Scholar 

  3. A. Kohout, I. Bat’ko, A. Czopnik, K. Flachbart, S. Matas, M. Meissner, Yu. Paderno, N. Shitsevalova, and K. Siemensmeyer, Phys. Rev. B: Condens. Matter 70, 224416 (2004).

    Google Scholar 

  4. A. Czopnik, N. Shitsevalova, A. Krivchikov, V. Pluzhnikov, Yu. Paderno, and Y. Onuki, J. Solid State Chem. 177, 507 (2004).

    Article  ADS  Google Scholar 

  5. F. Iga, Y. Takakuwa, T. Takahashi, M. Kasaya, T. Kasuya, and T. Sagawa, Solid State Commun. 50, 903 (1984).

    Article  ADS  Google Scholar 

  6. B. Gorshunov, P. Haas, O. Ushakov, M. Dressel, and F. Iga, Phys. Rev. B: Condens. Matter 73, 145207 (2006).

    Google Scholar 

  7. K. Flachbart, S. Gabani, K. Gloos, M. Meissner, M. Opel, Y. Paderno, V. Pavlik, P. Samuely, E. Schuberth, N. Shitsevalova, K. Siemensmeyer, and P. Szabo, J. Low Temp. Phys. 140, 339 (2005).

    Article  ADS  Google Scholar 

  8. M. Heinecke, K. Winzer, J. Noffke, H. Kranefeld, H. Grieb, K. Flachbart, and Yu. Paderno, Z. Phys. B: Condens. Matter 98, 231 (1995).

    Article  ADS  Google Scholar 

  9. N. Okuda, T. Suzuki, I. Ishii, S. Hiura, F. Iga, T. Takabatake, T. Fujita, H. Kadomatsu, and H. Harima, Physica B (Amsterdam) 281–282, 756 (2000).

    Google Scholar 

  10. B. Jäger, S. Paluch, O. J. Źogał, W. Wolf, P. Herzig, V. B. Filippov, N. Shitsevalova, and Yu. Paderno, J. Phys.: Condens. Matter 18, 2525 (2006).

    Article  ADS  Google Scholar 

  11. N. Sluchanko, L. Bogomolov, V. Glushkov, S. Demishev, M. Ignatov, Eu. Khayrullin, N. Samarin, D. Sluchanko, A. Levchenko, N. Shitsevalova, and K. Flachbart, Phys. Status Solidi B 243, R63 (2006).

    Article  ADS  Google Scholar 

  12. K. Siemensmeyer, K. Flachbart, S. Gabani, S. Mat’as, Y. Paderno, and N. Shitsevalova, J. Solid State Chem. 179, 2748 (2006).

    Article  ADS  Google Scholar 

  13. K. Siemensmeyer, K. Habicht, Th. Lonkai, S. Mat’as, S. Gabani, N. Shitsevalova, E. Wulf, and K. Flachbart, J. Low Temp. Phys. 146, 581 (2007).

    Article  ADS  Google Scholar 

  14. G. M. Kalvius, D. R. Noakes, N. Marcano, R. Wäppling, F. Iga, and T. Takabatake, Physica B (Amsterdam) 326(1–4), 398 (2003).

    ADS  Google Scholar 

  15. N. E. Sluchanko, A. V. Bogach, G. S. Burkhanov, O. D. Chistyakov, V. V. Glushkov, S. V. Demishev, N. A. Samarin, and D. N. Sluchanko, Physica B (Amsterdam) 359–361, 308 (2005).

    Google Scholar 

  16. N. E. Sluchanko, A. V. Bogach, V. V. Glushkov, S. V. Demishev, V. Yu. Ivanov, M. I. Ignatov, A. V. Kuznetsov, N. A. Samarin, A. V. Semeno, and N. Yu. Shitsevalova, Zh. Éksp. Teor. Fiz. 131(1), 133 (2007) [JETP 104 (1), 120 (2007)].

    Google Scholar 

  17. K. Yosida, Phys. Rev. 107, 396 (1957).

    Article  MATH  ADS  Google Scholar 

  18. Yu. Paderno, V. Filippov, and N. Shitsevalova, in Boron-Rich Solids, Ed. by D. Emin and T. L. Aselage (American Institute of Physics, Albuquerque, NM, United States, 1991), AIP Conf. Proc. 230, 460 (1991).

    Google Scholar 

  19. V. N. Trofimov, Cryogenics 32, 513 (1992).

    Article  Google Scholar 

  20. N. E. Sluchanko, A. V. Bogach, V. V. Glushkov, S. V. Demishev, M. I. Ignatov, N. A. Samarin, G. S. Burkhanov, and O. D. Chistyakov, Zh. Éksp. Teor. Fiz. 125(4), 906 (2004) [JETP 98, (4), 793 (2004)].

    Google Scholar 

  21. Y. Paderno, N. Shitsevalova, I. Bat’ko, K. Flachbart, H. Misiorek, J. Mucha, and A. Jezowski, J. Alloys Compd. 219, 215 (1995).

    Article  Google Scholar 

  22. H. Harima, N. Kobayashi, K. Takegahara, and T. Kasuya, J. Magn. Magn. Mater. 52, 367 (1985).

    Article  ADS  Google Scholar 

  23. A. A. Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow, 1987; North-Holland, Amsterdam, 1988).

    Google Scholar 

  24. N. E. Sluchanko, D. N. Sluchanko, V. V. Glushkov, S. V. Demishev, N. A. Samarin, and N. Yu. Shitsevalova, Pis’ma Zh. Éksp. Teor. Fiz. 86(9), 691 (2007) [JETP Lett. 86 (9), 604 (2007)].

    Google Scholar 

  25. P. Heller, Phys. Rev. 146, 403 (1966).

    Article  ADS  Google Scholar 

  26. A. Sabba Stefanescu and P.-J. Becker, J. Phys. C: Solid State Phys. 14, L737 (1981).

    Article  ADS  Google Scholar 

  27. J. C. Norvell, W. P. Wolf, L. M. Corliss, J. M. Hastings, and R. Nathans, Phys. Rev. 186, 557 (1969).

    Article  ADS  Google Scholar 

  28. J. Kotzler, W. Scheithe, K. Knorr, and W. B. Yelon, J. Phys. C: Solid State Phys. 9, 1291 (1976).

    Article  ADS  Google Scholar 

  29. S. Ma, Modern Theory of Critical Phenomena (Benjamin, Reading, MA, United States, 1976; Mir, Moscow, 1980).

    Google Scholar 

  30. K. Flachbart, P. Alekseev, G. Grechnev, N. Shitsevalova, K. Siemensmeyer, N. Sluchanko, and O. Zogal, submitted to Rare Earths: Research and Applications (Nova Science, Hauppauge, NY, United States, 2007).

    Google Scholar 

  31. A. Czopnik, A. Murasik, L. Keller, N. Shitsevalova, and Yu. Paderno, Phys. Status Solidi B 221, R7 (2000).

    Article  ADS  Google Scholar 

  32. M. B. Fontes, S. L. Bud’ko, M. A. Continentino, and E. M. Baggio-Saitovitch, Physica B (Amsterdam) 270, 255 (1999).

    ADS  Google Scholar 

  33. B. Chevalier, J. G. Soldevilla, J. I. Espeso, J. R. Fernandez, J. C. Gomez Sal, and J. Etourneau, Physica B (Amsterdam) 259–261, 44 (1999).

    Google Scholar 

  34. N. Nakajima, K. Izawa, Y. Matsuda, S. Uji, T. Terashima, H. Shishido, R. Settai, Y. Onuki, and H. Kontani, J. Phys. Soc. Jpn. 73, 5 (2004).

    Article  ADS  Google Scholar 

  35. N. Nakajima, H. Shishido, H. Nakai, T. Shibauchi, M. Hedo, Y. Uwatoko, T. Matsumoto, R. Settai, Y. Onuki, H. Kontani, and Y. Matsuda, Phys. Rev. B: Condens. Matter 77, 214504 (2008).

    Google Scholar 

  36. J. M. Harris, Y. F. Yan, P. Matl, N. P. Ong, P. W. Anderson, T. Kimura, and K. Kitazawa, Phys. Rev. Lett. 75, 1391 (1995).

    Article  ADS  Google Scholar 

  37. T. Sasaki, A. Lebed’, T. Fukase, and N. Toyota, Phys. Rev. B: Condens. Matter 54, 12969 (1996).

    ADS  Google Scholar 

  38. G. M. Danner, P. M. Chaikin, and S. T. Hannahs, Phys. Rev. B: Condens. Matter 53, 2727 (1996).

    ADS  Google Scholar 

  39. S. Arajs and G. R. Dunmyre, J. Appl. Phys. 36, 3555 (1965).

    Article  ADS  Google Scholar 

  40. S. Arajs, Phys. Status Solidi 37, 329 (1970).

    Article  Google Scholar 

  41. S. Arajs, G. R. Dunmyre, and S. J. Dechter, Phys. Rev. 154, 448 (1967).

    Article  ADS  Google Scholar 

  42. G. Montambaux, Phys. Rev. B: Condens. Matter 38, 4788 (1988).

    ADS  Google Scholar 

  43. É. L. Nagaev, Pis’ma Zh. Éksp. Teor. Fiz. 6(1), 484 (1967) [JETP Lett. 6 (1), 18 (1967)].

    Google Scholar 

  44. M. Yu. Kagan, K. I. Kugel, and D. I. Khomskii, Zh. Éksp. Teor. Fiz. 120(2), 470 (2001) [JETP 93 (2), 470 (2001)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Sluchanko.

Additional information

Original Russian Text © N.E. Sluchanko, A.V. Bogach, V.V. Glushkov, S.V. Demishev, N.A. Samarin, D.N. Sluchanko, A.V. Dukhnenko, A.V. Levchenko, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 135, No. 4, pp. 766–787.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sluchanko, N.E., Bogach, A.V., Glushkov, V.V. et al. Anomalies of magnetoresistance of compounds with atomic clusters RB12 (R = Ho, Er, Tm, Lu). J. Exp. Theor. Phys. 108, 668–687 (2009). https://doi.org/10.1134/S1063776109040153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109040153

PACS numbers

Navigation