Skip to main content
Log in

Screening of a moving charge in a nonequilibrium plasma

Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on the model of point sinks, we consider the problem on the screening of the charge of a moving macroparticle in a nonequilibrium plasma. The characteristic formation times of the polarization cloud around such a macroparticle have been determined by the method of a three-dimensional integral Fourier transformation in spatial variables and a Laplace transformation in time. The screening effect is shown to be enhanced with increasing macroparticle velocity. We consider the applicability conditions for the model of point sinks and establish that the domain of applicability of the results obtained expands with decreasing gas ionization rate and macroparticle size. We consider the problem of charge screening at low velocities and establish that the stationary potential of the moving charge has a dipole component that becomes dominant at large distances. We show that the direction of the force exerted on the dust particle by the induced charges generally depends on the relationship between the transport and loss coefficients of the plasma particles in a plasma. When the Langevin ion recombination coefficient β iL = 4πeμ i exceeds the electron-ion recombination coefficient β ei , this force will accelerate the dust particles in the presence of sinks. In the absence of sinks or when β ei > β iL , this force will be opposite in direction to the dust particle velocity. We also consider the problem on the energy and force of interaction between a moving charged macroparticle and the induced charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Debye and E. Hückel, Phys. Z. 24, 305 (1923).

    Google Scholar 

  2. A. A. Vlasov, Many-Particle Theory and Its Application. to Plasma (Gostekhizdat, Moscow, 1950; Gordon and Breach, New York, 1961).

    Google Scholar 

  3. D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. W. B. Thompson and J. Hubbard, Rev. Mod. Phys. 32, 714 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  5. D. Montgomery, G. Joyce, and R. Sugihara, Plasma Phys. 10, 681 (1968).

    Article  ADS  Google Scholar 

  6. G. Cooper, Phys. Fluids 12, 2707 (1969).

    Article  ADS  Google Scholar 

  7. P. M. Echenique, R. H. Ritchie, and W. Brandt, Phys. Rev. B: Condens. Matter 20, 2567 (1979).

    ADS  Google Scholar 

  8. É. É. Trofimovich and V. P. Kraoenov, Zh. Éksp. Teor. Fiz. 102(1), 71 (1992) [Sov. Phys. JETP 75 (1), 37 (1992).

    Google Scholar 

  9. É. É. Trofimovich and V. P. Kraoenov, Zh. Éksp. Teor. Fiz. 104(6), 3971 (1993) [JETP 77 (6), 910 (1993)].

    Google Scholar 

  10. A. V. Filippov, A. G. Zagorodny, and A. I. Momot, Pis’ma Zh. Éksp. Teor. Fiz. 88(1), 27 (2008) [JETP Lett. 88 (1), 24 (2007)].

    Google Scholar 

  11. A. G. Zagorodny, A. V. Filippov, A. F. Pal’, A. N. Starostin, and A. I. Momot, Zh. Fiz. Dosl. 11(2), 158 (2007).

    Google Scholar 

  12. S. V. Khrapak, S. A. Zhdanov, A. V. Ivlev, and G. E. Morfill, J. Appl. Phys. 101, 033307 (2007).

    Google Scholar 

  13. S. V. Vladimirov, S. A. Khrapak, M. Chaudhuri, and G. E. Morfill, Phys. Rev. Lett. 100, 055002 (2008).

    Google Scholar 

  14. F. Schweitzer, W. Ebeling, and B. Tilch, Phys. Rev. Lett. 80, 5044 (1998).

    Article  ADS  Google Scholar 

  15. U. Erdmann, W. Ebeling, L. Schimansky-Geier, and F. Schweitzer, Eur. Phys. J. B 15, 105 (2000).

    Article  ADS  Google Scholar 

  16. S. A. Trigger, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 046403 (2003).

  17. S. A. Trigger and A. G. Zagorodny, Condens. Matter Phys. 7, 629 (2004).

    Google Scholar 

  18. A. V. Filippov, A. G. Zagorodny, A. F. Pal’, and A. N. Starostin, Pis’ma Zh. Éksp. Teor. Fiz. 81(4), 180 (2005) [JETP Lett. 81 (4), 146 (2005)].

    Google Scholar 

  19. A. V. Filippov, A. G. Zagorodny, A. I. Momot, A. F. Pal, and A. N. Starostin, Zh. Éksp. Teor. Fiz. 131(1), 164 (2007) [JETP 104 (1), 147 (2007)].

    Google Scholar 

  20. A. V. Filippov, N. A. Dyatko, A. F. Pal’, and A. N. Starostin, Fiz. Plazmy (Moscow) 29(3), 214 (2003) [Plasma Phys. Rep. 29 (3), 190 (2003)].

    Google Scholar 

  21. H. Bateman and A. Erdélyi, Tables of Integral Transforms (McGraw-Hill, New York, 1954; Nauka, Moscow, 1969), Vol. 1.

    Google Scholar 

  22. B. M. Smirnov, Complex Ions (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  23. B. M. Smirnov, Ions and Excited Atoms in Plasma (Atomizdat, Moscow, 1974) [in Russian].

    Google Scholar 

  24. V. A. Ivanov, Usp. Fiz. Nauk 162(1), 35 (1992) [Sov. Phys.-Usp. 35 (1), 37 (2992)].

    Google Scholar 

  25. A. V. Filippov, A. G. Zagorodny, A. I. Momot, A. F. Pal’, and A. N. Starostin, Zh. Éksp. Teor. Fiz. 132(4), 949 (2007) [JETP 105 (5), 831 (2007)].

    Google Scholar 

  26. A. F. Pal’, A. N. Starostin, and A. V. Filippov, Fiz. Plazmy 27(2), 155 (2001) [Plasma Phys. Rep. 27 (2), 143 (2001)].

    Google Scholar 

  27. A. F. Pal’, A. O. Serov, A. N. Starostin, A. V. Filippov, and V. E. Fortov, Zh. Éksp. Teor. Fiz. 119(2), 272 (2001) [JETP 92 (2), 235 (2001)].

    Google Scholar 

  28. F. Melandso and J. Goree, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 52, 5312 (1995).

    Google Scholar 

  29. S. V. Vladimirov and O. Ishihara, Phys. Plasmas 3, 444 (1996).

    Article  ADS  Google Scholar 

  30. V. A. Schweigert, I. V. Schweigert, A. Melzer, A. Homann, and A. Piel, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 54, 4155 (1996).

    Google Scholar 

  31. A. Melzer, V. A. Schweigert, I. V. Schweigert, A. Homann, S. Peters, and A. Piel, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 54, R46 (1996).

    Google Scholar 

  32. M. Lampe, G. Joyce, G. Ganguli, and V. Gavrishchaka, Phys. Plasmas 7, 3851 (2000).

    Article  ADS  Google Scholar 

  33. A. N. Bogolyubov and V. V. Kravtsov, Problems of. Mathematical Physics (Moscow State University, Moscow, 1998) [in Russian].

    Google Scholar 

  34. V. E. Fortov, A. P. Nefedov, O. F. Petrov, A. A. Samarian, and A. V. Chernyschev, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 54, R2236 (1996).

  35. A. Zagorodny, O. Bystrenko, T. Bystrenko, A. V. Filippov, A. Momot, A. F. Pal’, and A. N. Starostin, in Proceedings. of the XXVIII International Conference on Phenomena. in Ionized Gases (ICPIG), Prague, Czech. Republic, 2007, p. 26.

  36. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Énergoatomizdat, Moscow, 1991; CRC Press, Boca Raton, FL, United States, 1996).

    Google Scholar 

  37. L. D. Landau and E. M. Lifshitz, Course of Theoretical. Physics, Vol 10: Physical Kinetics (Nauka, Moscow, 1979; Butterworth-Heinemann, Oxford, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Filippov.

Additional information

Original Russian Text © A.V. Filippov, A.G. Zagorodny, A.I. Momot, A.F. Pal’, A.N. Starostin, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 135, No. 3, pp. 567–586.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippov, A.V., Zagorodny, A.G., Momot, A.I. et al. Screening of a moving charge in a nonequilibrium plasma. J. Exp. Theor. Phys. 108, 497–515 (2009). https://doi.org/10.1134/S1063776109030145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109030145

PACS numbers

Navigation