Skip to main content
Log in

Atomic-vacancy ordering in the lowest tungsten carbide W2C

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Atomic-vacancy ordering in the lowest tungsten carbide W2C with an L′3-type basic hexagonal structure has been studied by neutron diffraction and X-ray diffraction. In the temperature range 2700–1370 K, the only ordered phase of the lowest tungsten carbide is shown to be the trigonal ɛ-W2C phase (space group P \(\overline 3 \) 1m). This trigonal ɛ-W2C phase is found to form via a disorder-order phase transition channel, which includes three superstructure vectors (k (1)15 , k (2)15 , k (1)17 ) of two Lifshitz stars ({k 15}, {k 17}, and to be described by two long-range order parameters (η15, η17). The distribution function of carbon atoms in the trigonal ɛ-W2C superstructure is calculated, and the corresponding region of the allowable values of the long-range order parameters η15 and η17 is found. Symmetry analysis of other possible superstructures of the lowest tungsten carbide W2C is performed, and the physically acceptable sequence of phase transformations in W2C is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Gusev, A. A. Rempel, and A. A. Magerl, Disorder and Order in Strongly Non-stoichiometric Compounds. Transition Metal Carbides, Nitrides and Oxides (Springer, Berlin, 2001).

    Google Scholar 

  2. A. I. Gusev, Nonstoichiometry, Disorder, and Short-range and Long-range Order in Solids (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  3. A. I. Gusev and A. A. Rempel, Phys. Status Solidi A 135, 15 (1993).

    Article  Google Scholar 

  4. A. I. Gusev, Usp. Fiz. Nauk 170, 3 (2000) [Phys. Usp. 43, 1 (2000)].

    Google Scholar 

  5. A. S. Kurlov and A. I. Gusev, Usp. Khim. 75, 687 (2006).

    Google Scholar 

  6. K. Yvon, H. Nowotny, and F. Benesovsky, Monatsh. Chem. 99, 726 (1968).

    Article  Google Scholar 

  7. E. Rudy and S. Windisch, J. Am. Ceram. Soc. 50, 272 (1967).

    Article  Google Scholar 

  8. E. Rudy and J. R. Hoffman, Planseeber. Pulvermet. 15, 174 (1967).

    Google Scholar 

  9. L. N. Butorina and Z. G. Pinsker, Kristallografiya 5, 585 (1960) [Sov. Phys. Crystallogr. 5, 560 (1960/1961)].

    Google Scholar 

  10. V. S. Telegus, E. I. Gladyshevskiĭ, and P. I. Kripyakevich, Kristallografiya 12, 936 (1967) [Sov. Phys. Crystallogr. 12, 813 (1967)].

    Google Scholar 

  11. V. S. Telegus, Yu. B. Kuz’ma, and M. A. Marko, Poroshk. Metall. (Kiev), No. 11, 56 (1971).

  12. J. Dubois, T. Epicier, C. Esnouf, et al., Acta Metall. 36, 1891 (1988).

    Article  Google Scholar 

  13. T. Epicier, J. Dubois, C. Esnouf, et al., Acta Metall. 36, 1903 (1988).

    Article  Google Scholar 

  14. A. Harsta, S. Rundqvist, and J. O. Thomas, Acta Chem. Scand. A 32, 891 (1978).

    Article  Google Scholar 

  15. B. Lönnberg, T. Lundström, and R. Tellgren, J. Less-Common Met. 120, 239 (1986).

    Article  Google Scholar 

  16. T. Epicier, J. Dubois, C. Esnouf, and G. Fantozzi, C. R. Acad. Sci Paris, Ser. II 297, 215 (1983).

    Google Scholar 

  17. V. Z. Kubliĭ and T. Ya. Velikanova, Poroshk. Metall. (Kiev), No. 11/12, 101 (2004).

  18. A. C. Larson and R. B. von Dreele, Los Alamos National Laboratory Report LAUR 86-748 (Los Alamos, 2004).

  19. B. E. Warren, B. L. Averbach, and B. W. Roberts, J. Appl. Phys. 22, 1493 (1951).

    Article  ADS  Google Scholar 

  20. O. V. Kovalev, Representations of the Crystallographis Space Groups: Irreducible Representations, Induced Representations, and Corepresentations (Nauka, Moscow, 1986; Gordon and Breach, Yverdon, Switzerland, 1993).

    Google Scholar 

  21. A. G. Khachaturyan, The Theory of Phase Transformations and the Structure of Solids Solutions (Nauka, Moscow, 1974) [n Russian].

    Google Scholar 

  22. A. I. Gusev and A. A. Rempel, Nanocrystalline Materials (Cambridge Int. Sci., Cambridge, 2004), p. 149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Gusev.

Additional information

Original Russian Text © A.S. Kurlov, A.I. Gusev, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 132, No. 4, pp. 812–826.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurlov, A.S., Gusev, A.I. Atomic-vacancy ordering in the lowest tungsten carbide W2C. J. Exp. Theor. Phys. 105, 710–721 (2007). https://doi.org/10.1134/S1063776107100056

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107100056

PACS numbers

Navigation