Skip to main content
Log in

Superradiance of several cold atoms

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A method for calculating the spontaneous emission power of several immobile dipole-interacting two-level atoms located in a volume of about the wavelength of resonance radiation has been proposed in the Schrödinger representation. It has been shown that two atoms cannot, but four atoms can, emit a superradiance pulse under the conditions corresponding to experiments with cold atoms in dipole traps. Various methods for determining the quasistationary mixed atomic states, as well as the generalization of this method to other resonance emitting systems, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  MATH  Google Scholar 

  2. N. E. Rehler and J. H. Eberly, Phys. Rev. A 3, 1735 (1971).

    Article  ADS  Google Scholar 

  3. A. V. Andreev, V. I. Emel’yanov, and Yu. A. Il’inskiĭ, Usp. Fiz. Nauk 131, 653 (1980) [Sov. Phys. Usp. 23, 493 (1980)].

    Google Scholar 

  4. L. I. Men’shikov, Usp. Fiz. Nauk 169, 653 (1999) [Phys. Usp. 42, 573 (1999)].

    Google Scholar 

  5. A. V. Andreev, V. I. Emel’yanov, and Yu. A. Il’inskiĭ, Cooperative Phenomena in Optics: Superradiance, Bistability, Phase Transitions (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  6. C. Cherubini, F. Federici, S. Succi, and M. P. Tosi, Phys. Rev. D 72, 084016 (2005).

    Google Scholar 

  7. J. J. Sanchez-Mondragon, A. Alejo-Molina, S. Sanchez-Sanchez, et al., Proc. SPIE 5734, 152 (2005).

    ADS  Google Scholar 

  8. Y. N. Chen, D. S. Chuu, and T. Brandes, Phys. Rev. Lett. 90, 166 802 (2003).

    Google Scholar 

  9. G. Bacher, R. Weigand, J. Seufert, et al., Phys. Rev. Lett. 83, 4417 (1999).

    Article  ADS  Google Scholar 

  10. A. I. Klimovskaya, Yu. A. Driga, E. G. Gule, et al., Semiconductors 37, 681 (2003).

    Article  ADS  Google Scholar 

  11. B. Laikhtman and L. D. Shvartsman, AIP Conf. Proc. 772, 981 (2005).

    ADS  Google Scholar 

  12. P. P. Vasil’ev, Kvantovaya Élektron. (Moscow) 29(10), 4 (1999).

    Google Scholar 

  13. F. Meinardi, M. Cerminara, A. Sassella, et al., Phys. Rev. Lett. 91, 247 401 (2003).

  14. N. Schlosser, G. Reymond, I. Protsenko, et al., Nature 411, 1024 (2001).

    Article  ADS  Google Scholar 

  15. S. Bergamini, B. Darquié, M. Jones, et al., J. Opt. Soc. Am. B 21, 1889 (2004).

    ADS  Google Scholar 

  16. E. D. Trifonov, Zh. Éksp. Teor. Fiz. 120, 1117 (2001) [JETP 93, 969 (2001)].

    Google Scholar 

  17. J. Eschner, Ch. Raab, F. Schmidt-Kaler, et al., Nature 413, 495 (2001).

    Article  ADS  Google Scholar 

  18. K. A. Valiev, Usp. Fiz. Nauk 175, 3 (2005) [Phys. Usp. 48, 1 (2005)].

    MathSciNet  Google Scholar 

  19. I. E. Protsenko, G. Reymond, N. Schlosser, and Ph. Grangier, Izv. Ross. Akad. Nauk, Ser. Fiz. 68, 1235 (2004).

    Google Scholar 

  20. N. Gisin, G. Ribordy, W. Tittel, et al., Rev. Mod. Phys. 74, 145 (2002).

    Article  ADS  Google Scholar 

  21. A. A. Kalachev and V. V. Samartsev, Kvantovaya Élektron. (Moscow) 32, 707 (2002).

    Article  Google Scholar 

  22. I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, et al., Phys. Rev. A 71, 063812 (2005).

    Google Scholar 

  23. D. M. Willard and A. V. Orden, Nature Mater. 2, 575 (2003).

    Article  ADS  Google Scholar 

  24. A. Retzker, J. I. Cirac, and B. Reznik, Phys. Rev. Lett. 94, 050504 (2005).

    Google Scholar 

  25. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 4th ed. (Nauka, Moscow, 1989; Oxford Univ. Press, Oxford, 1980).

    Google Scholar 

  26. I. V. Bargatin, B. A. Grishanin, and V. N. Zadkov, Usp. Fiz. Nauk 171, 625 (2001) [Phys. Usp. 44, 567 (2001)].

    Article  Google Scholar 

  27. S. J. D. Phoenix and P. L. Knight, Phys. Rev. A 44, 6023 (1991).

    Article  ADS  Google Scholar 

  28. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

    Article  ADS  MATH  Google Scholar 

  29. J. S. Bell, Physics (Long Island City, New York) 1, 195 (1965); reprinted in J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge Univ. Press, Cambridge, 1988).

    Google Scholar 

  30. S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022 (1997).

    Article  ADS  Google Scholar 

  31. V. Weiskopf and E. Wigner, Z. Phys. 63, 54 (1930); Z. Phys. 65, 18 (1930); M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, Cambridge, 1997; Fizmatlit, Moscow, 2003); A. N. Oraevskiĭ, Usp. Fiz. Nauk 164, 415 (1994) [Phys. Usp. 37, 393 (1994)].

    Article  ADS  Google Scholar 

  32. Ö. Çakir, A. A. Klyachko, and A. S. Shumovsky, Phys. Rev. A 71, 034303 (2005).

    Google Scholar 

  33. Th. Richter, Ann. Phys. (Leipzig) 36, 266 (1979).

    ADS  Google Scholar 

  34. P. W. Milonni and P. L. Knight, Phys. Rev. A 10, 1096 (1974).

    Article  ADS  Google Scholar 

  35. I. E. Protsenko, V. N. Samoilov, and O. A. Zaimidoroga, J. Russ. Laser Res. 22, 23 (2001).

    Article  Google Scholar 

  36. A. M. Basharov, Zh. Éksp. Teor. Fiz. 121, 1249 (2002) [JETP 94, 1070 (2002)].

    Google Scholar 

  37. A. A. Makarov and V. S. Letokhov, Zh. Éksp. Teor. Fiz. 124, 766 (2003) [JETP 97, 688 (2003)].

    Google Scholar 

  38. R. G. DeVoe and R. G. Brewer, Phys. Rev. Lett. 76, 2049 (1996).

    Article  ADS  Google Scholar 

  39. R. H. Lehmberg, Phys. Rev. A 2, 883 (1970).

    Article  ADS  Google Scholar 

  40. G. S. Agarwal, Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches (Springer, Berlin, 1974).

    Google Scholar 

  41. R. H. Lehmberg, Phys. Rev. A 2, 889 (1970).

    Article  ADS  Google Scholar 

  42. P. Grangier, A. Aspect, and J. Vigue, Phys. Rev. Lett. 54, 418 (1985).

    Article  ADS  Google Scholar 

  43. P. Grangier and J. Vigue, J. Phys. 48, 78 (1987).

    Google Scholar 

  44. H. Freedhoff, Phys. Rev. A 69, 013814 (2004).

    Google Scholar 

  45. W. G. Teich and G. Mahler, Phys. Rev. A 45, 3300 (1992).

    Article  ADS  Google Scholar 

  46. R. Bonifacio and L. A. Lugiato, Phys. Rev. A 11, 1507 (1975); Phys. Rev. A 12, 587 (1975).

    Article  ADS  Google Scholar 

  47. V. A. Zuĭkov, A. A. Kalachev, V. V. Samartsev, et al., Kvantovaya Élektron. (Moscow) 30, 629 (2000).

    Article  Google Scholar 

  48. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).

    Article  ADS  Google Scholar 

  49. B. Lamprecht, G. Schider, R. T. Lechner, et al., Phys. Rev. Lett. 84, 4721 (2000).

    Article  ADS  Google Scholar 

  50. D. J. Bergman and M. I. Stockmann, Phys. Rev. Lett. 90, 027402 (2003).

    Google Scholar 

  51. V. V. Klimov, M. Ducloy, and V. S. Letokhov, Kvantovaya Élektron. (Moscow) 31, 569 (2001).

    Article  Google Scholar 

  52. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields, 7th ed. (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.E. Protsenko, 2006, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 130, No. 2, pp. 195–211.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Protsenko, I.E. Superradiance of several cold atoms. J. Exp. Theor. Phys. 103, 167–182 (2006). https://doi.org/10.1134/S1063776106080012

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776106080012

PACS numbers

Navigation