Skip to main content
Log in

Possibilities of X-Ray Absorption Spectroscopy in the Total External Reflection Geometry for Studying Protein Films on Liquids

  • SURFACE AND THIN FILMS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

XANES spectra of protein films (hemoglobin and alkaline phosphatase) formed on the surface of a liquid subphase in a Langmuir trough have been obtained experimentally. The potential of X-ray absorption spectroscopy in the total external reflection geometry is demonstrated by the example of a protein film based on hemoglobin subjected to the action of urea. It is established that the presence of 0.09 M urea solution in the subphase enhances significantly the ability of hemoglobin to bind zinc and iron ions. Information about the local atomic environment of zinc ions bound with a hemoglobin molecule is obtained. It is shown that each zinc ion is coordinated by four ligands, two of which are amino acid residues of cysteine and histidine. The general concepts of the molecular mechanisms of accumulation of metal ions under the action of disturbing factors are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. Bianconi, X-RayAbsorption: Principles, Applications and Techniques of EXAFS, SEXAFS, and XANES (Wiley, New York, 1988).

    Google Scholar 

  2. J. A. Bokhoven and C. Lamberti, X-Ray Absorption and X-Ray Emission Spectroscopy. Theory and Applications (Wiley, New York, 2016).

    Book  Google Scholar 

  3. W. M. Michael, G. H. Ryan, E. R. Marco, et al., Science 356, 1276 (2017).

    Article  ADS  Google Scholar 

  4. F. Boffi, I. Ascone, S. Della-Longa, et al., Eur. Biophys. J. 32, 329 (2003).

    Article  Google Scholar 

  5. S. Reeg and T. Grune, Antioxid. Redox Signaling 23, 239 (2015).

    Article  Google Scholar 

  6. S. S. Leal, J. S. Cristóvão, A. Biesemeier, et al., Metallomics 7, 333 (2015).

    Article  Google Scholar 

  7. F. H. Verbrugge, W. H. W. Tang, and S. L. Hazen, Kidney Int. 88 (3), 474 (2015).

    Article  Google Scholar 

  8. A. Pieniazek and K. Gwozdzinski, Oxid. Med. Cell. Longevity I, 783073 (2015).

    Google Scholar 

  9. N. N. Novikova, M. V. Kovalchuk, E. A. Yurieva, et al., J. Phys. Chem. B. 40, 8370 (2019).

    Article  Google Scholar 

  10. S. A. Wilsona, E. Green, I. I. Mathews, et al., PNAS 110 (41), 16333 (2013).

    Article  ADS  Google Scholar 

  11. R. K. Hocking, E. C. Wasinger, Y.-L. Yan, et al., J. Am. Chem. Soc., No. 129, 113 (2007).

    Article  Google Scholar 

  12. G. Bunker, Interpreting XANES (Illinois Institute of Technology). http://gbxafs.iit.edu/training/XANES_intro.pdf. 28.08.2017.

  13. D. A. Paola and B. Maurizio, J. Phys. Chem. A 108, 4505 (2004).

    Article  Google Scholar 

  14. M. C. Feiters, A. P. A. M. Eijkelenboom, H.-F. Nolting, et al., J. Synchrotron Radiat., No. 10, 86 (2004).

  15. L. Giachini, G. Veronesi, F. Francia, et al., J. Synchrotron Radiat. 17, 41 (2010).

    Article  Google Scholar 

  16. G. Veronesi, S. J. Whitehead, F. Francia, et al., Biochim. Biophys. Acta 1797, 494 (2010).

    Article  Google Scholar 

  17. P. A. Jennings and P. E. Wright, Science 262, 892 (1993).

    Article  ADS  Google Scholar 

  18. D. S. Culbertson and J. S. Olson, Protein Folding and Metal Ions: Mechanisms, Biology, Disease (Taylor and Francis, London, 2010), p. 97.

    Google Scholar 

  19. P. W. Jia, R. A. Buehler, R. M. Boykins, et al., J. Biol. Chem. 282, 4894 (2007).

    Article  Google Scholar 

  20. A. Salmeen, J. N. Andersen, M. P. Myers, et al., Nature 423, 769 (2003).

    Article  ADS  Google Scholar 

  21. T. Nakamura, T. Yamamoto, M. Abe, et al., Proc. Natl. Acad. Sci. U. S. A. 105, 6238 (2008).

    Article  ADS  Google Scholar 

  22. N. M. Giles, A. B. Watts, G. I. Giles, et al., Chem. Biol. 10, 677 (2003).

    Article  Google Scholar 

  23. T. Arakawa, Y. Kawano, Y. Katayama, et al., J. Am. Chem. Soc. 131, 14838 (2009).

    Article  Google Scholar 

  24. N. A. Sieracki, S. Tian, R. G. Hadt, et al., Proc. Natl. Acad. Sci. U. S. A. 111, 924 (2014).

    Article  ADS  Google Scholar 

  25. O. M. Poltorak, E. S. Chukhray, I. Y. Torshin, et al., J. Mol. Catalysis B: Enzymatic 7, 165 (1999).

    Article  Google Scholar 

  26. J. Wang, K. A. Steiglitz, and E. R. Kantrowitz, Biochemistry 44, 8378 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Novikova.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikova, N.N., Yakunin, S.N., Koval’chuk, M.V. et al. Possibilities of X-Ray Absorption Spectroscopy in the Total External Reflection Geometry for Studying Protein Films on Liquids. Crystallogr. Rep. 64, 952–957 (2019). https://doi.org/10.1134/S1063774519060130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774519060130

Navigation