Skip to main content
Log in

X-ray Diffraction Study of Bacterial Nanocellulose Produced by Medusomyces Gisevii Sa-12 Cultured in Enzymatic Hydrolysates of Miscanthus

  • STRUCTURE OF MACROMOLECULAR COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Bacterial nanocellulose, which was produced by Medusomyces gisevii Sa-12 cultured in enzymatic hydrolysates of Miscanthus, was studied by X-ray diffraction. The characteristics of the supramolecular structure of the crystalline component of cellulose samples, such as the degree of crystallinity and the size and shape of elementary fibrils, were determined. The atomic structure was compared with the known structural models of cellulose, and the synthesized bacterial nanocellulose was shown to be cellulose Iα. The lengths and angles of the triclinic unit cell were determined. The composition of the culture medium made from enzymatic hydrolysates of Miscanthus was found to have an effect on the shape and size of elementary fibrils and have no effect on the degree of crystallinity and the fraction of cellulose allomorph Іα. The use of Medusomyces gisevii Sa-12 as the producing organism allows the preparation of bacterial nanocellulose with a high degree of crystallinity in the range of 86–93% containing cellulose allomorph Іα as the major component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. T. Heinze, O. A. El Seoud, and A. Koschella, Cellulose Derivatives. Synthesis, Structure, and Properties (Springer, Switzerland, 2018).

    Book  Google Scholar 

  2. Y. G. Baklagina, V. V. Klechkovskaya, S. V. Kononova, et al., Crystallogr. Rep. 63 (3), 303 (2018).

    Article  ADS  Google Scholar 

  3. L. A. Aleshina, E. K. Gladysheva, V. V. Budaeva, et al., Crystallogr. Rep. 63 (6), 955 (2018).

    Article  ADS  Google Scholar 

  4. A. Kuila and V. Sharma, Principles and Applications of Fermentation Technology (Scrivener, Beverly, 2018).

    Book  Google Scholar 

  5. H. Barud, R. R. Silva, H. Barud, et al., Carbohyd. Polym. 153, 406 (2016).

    Article  Google Scholar 

  6. U. M. Islam, M. W. Ullah, S. Khana, et al., Int. J. Biol. Macromol. 102, 1166 (2017).

    Article  Google Scholar 

  7. M. Gama, F. Dourado, and S. Bielecki, Bacterial Nanocellulose from Biotechnology to Bio-Economy (Elsevier, Amsterdam, 2016).

    Book  Google Scholar 

  8. M. T. Luo, C. Zhao, C. Huang, et al., Indian J. Microbiol. 57 (4), 393 (2017).

    Article  Google Scholar 

  9. M. Velasquez-Riano and V. Bojaca, Cellulose 24, 2677 (2017).

    Article  Google Scholar 

  10. A. Vazquez, M. L. Foresti, P. Cerrutti, and M. Galvagno, J. Polym. Environ. 21 (2), 545 (2013).

    Article  Google Scholar 

  11. C. Molina-Ramírez, C. Castro, R. Zuluaga, and P. Gañán, J. Polym. Environ. 26 (2), 830 (2018).

    Article  Google Scholar 

  12. F. Mohammadkazemi, Am. J. Appl. Indr. Chem. 1 (1), 10 (2017).

    Google Scholar 

  13. V. V. Budaeva, E. A. Skiba, O. V. Baibakova, et al., Catal. Ind. 8 (1), 81 (2016).

    Article  Google Scholar 

  14. E. A. Skiba, V. V. Budaeva, O. V. Baibakova, et al., Catal. Ind. 8 (2), 168 (2016).

    Article  Google Scholar 

  15. Y. A. Gismatulina and V. V. Budaeva, Ind. Crop. Prod. 109, 227 (2017).

    Article  Google Scholar 

  16. O. V. Baibakova, E. A. Skiba, V. V. Budaeva, and V. N. Zolotukhin, Polzunovskii Vestn. 1 (4), 147 (2016).

    Google Scholar 

  17. V. V. Budaeva, E. I. Makarova, and Yu. A. Gismatulina, Key Eng. Mater. 670, 202 (2016).

    Article  Google Scholar 

  18. M. N. Denisova, E. I. Makarova, I. N. Pavlov, et al., Biotechnol. Appl. Biochem. 178 (6), 1196 (2016).

    Article  Google Scholar 

  19. E. K. Gladysheva, E. A. Skiba, V. N. Zolotukhin, and G. V. Sakovich, Appl. Biochem. Microbiol. 54 (2), 179 (2018).

    Article  Google Scholar 

  20. M. A. Torlopov, V. I. Mikhaylov, E. V. Udoratina, et al., Cellulose 25 (2), 1031 (2018).

    Article  Google Scholar 

  21. P. T. Chandrasekaran, N. K. Bari, and S. Sinha, Cellulose 24, 4367 (2017).

    Article  Google Scholar 

  22. M. Khandelwal, A. H. Windle, and N. Hessler, J. Mater. Sci. 5, 4839 (2016).

    Article  ADS  Google Scholar 

  23. P. C. S. Faria-Tischer, C. A. Tischer, L. Heux, et al., Mat. Sci. Eng. C-Bio. S. 51 (1), 167 (2015).

    Google Scholar 

  24. J. Sugiyama, R. Vuong, and H. Chanzy, Macromolecules 24, 4168 (1991).

    Article  ADS  Google Scholar 

  25. A. D. French, Cellulose 21, 885 (2014).

    Article  Google Scholar 

  26. Y. Nishiyama, J. Sugiyama, H. Chanzy, and P. Langan, J. Am. Chem. Soc. 125, 14300 (2003).

    Article  Google Scholar 

  27. Y. Nishiyama, P. Langan, and H. Chanzy, J. Am. Chem. Soc. 124, 9074 (2002).

    Article  Google Scholar 

  28. A. B. Poma, M. Chwastyk, and M. Cieplak, Cellulose 23 (3), 1573 (2016).

    Article  Google Scholar 

  29. L. A. Aleshina, S. V. Glazkova, L. A. Lugovskaya, et al., Khim. Rastit. Syr’ya, No. 1, 5 (2001).

    Google Scholar 

  30. K. Cheng, J. Catchmark, and A. Demirci, J. Biol. Eng. 3 (12), 1 (2009).

    Article  Google Scholar 

  31. R. J. Moon, A. Martini, J. Nairn, et al., Chem. Soc. Rev. 40, 3941 (2011).

    Article  Google Scholar 

  32. L. H. Thomas, V. T. Forsyth, A. Šturcová, et al., Plant Physiol. 161, 465 (2013).

    Article  Google Scholar 

  33. A. A. Baker, W. Helbert, J. Sugiyama, et al., Biophys. J. 79, 1139 (2000).

    Article  Google Scholar 

  34. S.-Y. Ding, S. Shuai, and Y. Yining, Cellulose 2, 863 (2014).

    Article  Google Scholar 

  35. V. G. Savchenko, G. G. Belozerskaya, V. A. Makarov, et al., RF Patent No. 2624242 (August 10, 2016), Byull. Izobret., 2017, no. 19, p. 19.

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 17-19-01054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. A. Aleshina or V. V. Budaeva.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshina, L.A., Gladysheva, E.K., Budaeva, V.V. et al. X-ray Diffraction Study of Bacterial Nanocellulose Produced by Medusomyces Gisevii Sa-12 Cultured in Enzymatic Hydrolysates of Miscanthus. Crystallogr. Rep. 64, 914–919 (2019). https://doi.org/10.1134/S1063774519060026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774519060026

Navigation