Skip to main content
Log in

Anisotropy of the Mechanical Properties of TbF3 Crystals

  • Physical Properties of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

TbF3 (sp. gr. Pnma) crystals up to 40 mm in diameter have been grown from melt by a Bridgman technique. The anisotropy of their mechanical properties is studied for the first time. the technical elasticity constants are calculated, and room-temperature values of Vickers microhardness for the (010) and (100) planes are measured. The shape of indentation impressions is found to correlate with Young’s modulus anisotropy for TbF3 crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kawashima, T. Nakanishi, Y. Kitagawa, et al., Bull. Chem. Soc. Jpn. 88 (10), 1453 (2015).

    Article  Google Scholar 

  2. L. Holmes and H. J. Guggenheim, J. Phys. Colloq. 32 (1–2), C1–501 (1971).

    Google Scholar 

  3. J. Brinkmann, R. Courths, and S. Hufner, J. Magn. Magn. Mater. 6, 279 (1977).

    Article  ADS  Google Scholar 

  4. B. P. Sobolev, P. P. Fedorov, D. B. Steynberg, et al., J. Solid State Chem. 17 (1–2), 191 (1976).

    Article  ADS  Google Scholar 

  5. F. H. Spedding, B. J. Beaudry, D. C. Henderson, and J. Moorman, J. Chem. Phys. 60 (4), 1578 (1974).

    Article  ADS  Google Scholar 

  6. A. Zalkin and D. H. Templeton, J. Am. Chem. Soc. 75 (10), 2453 (1953).

    Article  Google Scholar 

  7. M. Piotrowski, H. Ptasiewicz-Bąk, and A. Murasik, Phys. Status Solidi A 55 (2), K163 (1979).

    Article  ADS  Google Scholar 

  8. M. M. Lage, A. Righi, F. M. Matinaga, et al., J. Phys.: Condens. Matter 16 (18), 3207 (2004).

    ADS  Google Scholar 

  9. E. Karajamaki, R. Laiho, and T. Levola, Phys. Rev. 23 (12), 6307 (1981).

    Article  ADS  Google Scholar 

  10. D. C. Krupka and H. J. Guggenheim, J. Chem. Phys. 51 (9), 4006 (1969).

    Article  ADS  Google Scholar 

  11. M. F. Joubert, B. Jacquier, R. Moncorge, and G. Boulon, J. Phys. 43 (6), 893 (1982).

    Article  Google Scholar 

  12. V. I. Kushnirenko, M. V. Sopinskyy, E. G. Manoilov, and V. S. Khomchenko, J. Alloys Compd. 451 (1–2), 209 (2008).

    Article  Google Scholar 

  13. Ph. W. Metz, D.-T. Marzahl, A. Majid, and Ch. Krankel, Laser Photonics Rev. 10 (2), 335 (2016).

    Article  Google Scholar 

  14. O. Greis and T. Petzel, Z. Anorg. Allg. Chem. 403 (1), 1 (1974).

    Article  Google Scholar 

  15. Yu. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, Moscow, 1975).

    Google Scholar 

  16. J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1957).

    MATH  Google Scholar 

  17. R. V. Goldstein, V. A. Gorodtsov, and D. S. Lisovenko, Phys. Status Solidi B 250 (10), 2038 (2013).

    Google Scholar 

  18. D. S. Lisovenko, Deform. Razrushenie Mater., No. 7, 1 (2011).

    Google Scholar 

  19. T.-C. Lim, Auxetic Materials and Structures. Engineering Materials (Springer, Singapore, 2015), Vol. XV.

    Google Scholar 

  20. K. Sangwal, Cryst. Res. Technol. 44 (10), 1019 (2009).

    Article  Google Scholar 

  21. B. W. Mott, Microindentation Hardness Testing (Butterworths, London,1957).

    Google Scholar 

  22. Yu. S. Boyarskaya, Deformation of Crystals during Microhardness Tests (Shtiinca Publ., Kishinev, 1972) [in Russian].

    Google Scholar 

  23. E. A. Krivandina, Z. I. Zhmurova, G. V. Berezhkova, et al., Kristallografiya 57 (4), 741 (1995).

    Google Scholar 

  24. D. N. Karimov, O. N. Komar’kova, N. I. Sorokin, et al., Crystallogr. Rep. 55 (3), 518 (2010).

    Article  ADS  Google Scholar 

  25. M. Yu. Gryaznov, S. V. Shotin, V. N. Chuvil’deev, et al., Crystallogr. Rep. 57 (1), 144 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Karimov.

Additional information

Original Russian Text © D.N. Karimov, D.S. Lisovenko, N.L. Sizova, B.P. Sobolev, 2018, published in Kristallografiya, 2018, Vol. 63, No. 1, pp. 106–113.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimov, D.N., Lisovenko, D.S., Sizova, N.L. et al. Anisotropy of the Mechanical Properties of TbF3 Crystals. Crystallogr. Rep. 63, 96–103 (2018). https://doi.org/10.1134/S1063774518010108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774518010108

Navigation