Skip to main content
Log in

Influence of arsenic flow on the crystal structure of epitaxial GaAs grown at low temperatures on GaAs (100) and (111)A substrates

  • Real Structure of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The influence of arsenic flow in a growth chamber on the crystal structure of GaAs grown by molecular-beam epitaxy at a temperature of 240°C on GaAs (100) and (111)A substrates has been investigated. The flow ratio γ of arsenic As4 and gallium was varied in the range from 16 to 50. GaAs films were either undoped, or homogeneously doped with silicon, or contained three equidistantly spaced silicon δ-layers. The structural quality of the annealed samples has been investigated by transmission electron microscopy. It is established for the first time that silicon δ-layers in “low-temperature” GaAs serve as formation centers of arsenic precipitates. Their average size, concentration, and spatial distribution are estimated. The dependence of the film structural quality on γ is analyzed. Regions 100–150 nm in size have been revealed in some samples and identified (by X-ray microanalysis) as pores. It is found that, in the entire range of γ under consideration, GaAs films on (111)A substrates have a poorer structural quality and become polycrystalline beginning with a thickness of 150–200 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Liliental-Weber, H. J. Cheng, S. Gupta, et al., J. Electron. Mater. 22 (12), 1465 (1993).

    Article  ADS  Google Scholar 

  2. M. Missous, Microelectron. J. 27, 393 (1996).

    Article  Google Scholar 

  3. S. Gupta, M. Y. Frankel, J. A. Valdmanis, et al., Appl. Phys. Lett. 59 (25), 3276 (1991).

    Article  ADS  Google Scholar 

  4. C. Baker, I. S. Gregory, W. R. Tribe, et al., Appl. Phys. Lett. 83, 4113 (2003).

    Article  ADS  Google Scholar 

  5. I. S. Gregory, C. Baker, W. R. Tribe, et al., Appl. Phys. Lett. 83, 4199 (2003).

    Article  ADS  Google Scholar 

  6. H. Fujioka, E. R. Weber, and A. K. Verma, Appl. Phys. Lett. 66, 2834 (1995).

    Article  ADS  Google Scholar 

  7. K. Mahalingam, N. Otsuka, M. R. Melloch, et al., J. Vac. Sci. Technol. B 10 (2), 812 (1991).

    Article  Google Scholar 

  8. V. V. Chaldyshev, Mater. Sci. Eng. B 88 (2–3), 195 (2002).

    Article  Google Scholar 

  9. N. A. Bert, V. V. Chaldyshev, N. N. Faleev, et al., Semicond. Sci. Technol. 12, 51 (1997).

    Article  ADS  Google Scholar 

  10. T. M. Cheng, C. V. Chang, A. Chin, et al., Appl. Phys. Lett. 64, 2517 (1994).

    Article  ADS  Google Scholar 

  11. V. V. Chaldyshev, M. Ya. Yagovkina, M. V. Baidakova, et al., Semiconductors 43 (8), 1078 (2009).

    Article  ADS  Google Scholar 

  12. M. V. Baidokova, N. A. Bert, V. V. Chaldyshev, et al., Acta Crystallogr. B 69, 30 (2013).

    Article  Google Scholar 

  13. A. P. Kotkov, A. N. Moiseev, N. D. Grishnova, et al., Prikl. Fiz., No. 1, 81 (2010).

    Google Scholar 

  14. M. Kondo, C. Anayama, N. Okada, et al., J. Appl. Phys. 76 (2), 914 (1994).

    Article  ADS  Google Scholar 

  15. D. V. Lavrukhin, A. E. Yachmenev, A. S. Bugaev, et al., Semiconductors 49 (7), 911 (2015).

    Article  ADS  Google Scholar 

  16. G. B. Galiev, E. A. Klimov, D. V. Lavrukhin, et al., Nano-Mikrosist. Tekh., No. 6, 28 (2014).

    Google Scholar 

  17. T. Hayakawa, M. Kondo, T. Suyama, et al., Jpn. J. Appl. Phys. 26 (4), L302 (1987).

    Article  ADS  Google Scholar 

  18. A. Chin, P. Martin, U. Das, et al., J. Vac. Sci. Technol. B 10, 775 (1992).

    Article  Google Scholar 

  19. T. Ohachi, J. M. Feng, K. Asai, et al., Microelectron. J. 30, 471 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Pushkarev.

Additional information

Original Russian Text © G.B. Galiev, E.A. Klimov, A.L. Vasiliev, R.M. Imamov, S.S. Pushkarev, I.N. Trunkin, P.P. Maltsev, 2017, published in Kristallografiya, 2017, Vol. 62, No. 1, pp. 77–85.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galiev, G.B., Klimov, E.A., Vasiliev, A.L. et al. Influence of arsenic flow on the crystal structure of epitaxial GaAs grown at low temperatures on GaAs (100) and (111)A substrates. Crystallogr. Rep. 62, 82–90 (2017). https://doi.org/10.1134/S1063774517010072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774517010072

Navigation