Skip to main content
Log in

Estimating the Parameters of Collisions between Fractal Dust Clusters in a Gas–Dust Protoplanetary Disk

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Studying the origin and evolution of the Solar system is among the fundamental problems of modern natural science. This problem is interdisciplinary and requires the development of mathematical models for the physical structure and evolution of a gas–dust accretion disk from the initial stages of its formation to the formation of a planetary system. One of the key problems is the formation and growth of bodies in a protoplanetary disk, the basis for which is a study of the collisional processes of the solidbody component. We have performed a parametric analysis of the cluster–cluster collision processes occurring in a protoplanetary disk within the model of permeable particles being developed by us. The outcome of such collisions is shown to be affected significantly by the topological properties of colliding dust clusters with a fractal internal structure. The results of our parametric analysis show that for sufficiently “dense” fractal dust clusters, at low relative collision velocities, there exists a range in which the colliding clusters bounce. At the same time, for “porous” fractal clusters the bounce is impossible for any sets of collision parameters. As the relative collision velocities increase, the cluster coalescence processes begin to dominate due to a rearrangement of the fractal structure in the contact zone. However, as the kinetic energy of collisions increases further, a critical threshold is reached beyond which the collision energy exceeds the particle binding energy in clusters and the fractal dust cluster destruction processes are switched on during collisions. Thus, our parametric analysis imposes quite definite constraints on the dynamics and chronology of the evolution processes during the formation of primordial solid bodies and planetesimals. The proposed approach and the results obtained are fairly realistic and open prospects for more comprehensive model studies of the initial evolutionary phase of a protoplanetary disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Cruz and L. Barba, arXiv:0809.1810 [cs.DS] (2008).

  2. C. Dominik and A. G. G. M. Tielens, Philos. Mag. A 72, 783 (1995).

    Article  ADS  Google Scholar 

  3. J. Dubinski, New Astron. 1, 133 (1996).

    Article  ADS  Google Scholar 

  4. A. Johansen, J. Blum, H. Tanaka, C. Ormel, M. Bizzarro, and H. Rickman, in The Multifaceted Planetesimal Formation Process. Protostars and Planets VI, Ed. by H. Beuther, R. S. Klessen, C. P. Dullemond, and T. Henning (Univ. Arizona Press, Tucson, 2014), p.547.

  5. A. Kataoka, H. Tanaka, S. Okuzumi, and K. Wada, Astron. Astrophys. 557, L4 (2013); arXiv:1307.7984v2 [astro-ph.EP].

    Article  ADS  Google Scholar 

  6. A. V. Kolesnichenko and M. Ya. Marov, Solar Syst. Res. 47, 80 (2013).

    Article  ADS  Google Scholar 

  7. A. V. Kolesnichenko and M. Ya. Marov, Solar Syst. Res. 48, 354 (2014).

    Article  ADS  Google Scholar 

  8. S. Koonin, Computational Physics: Fortran Version (AddisonWesley, Reading,MA, 1990).

    MATH  Google Scholar 

  9. M. Ya. Marov, A. V. Kolesnichenko, A. B. Makalkin, V. A. Dorofeeva, I. N. Ziglina, and A. V. Chernov, in Problems of Biosphere Origin and Evolution, Ed. by E. M. Galimov (Nova Science, New York, 2013), Vol. 1, p.319.

    Google Scholar 

  10. M. Ya. Marov, V. A. Dorofeeva, A. V. Rusol, A. V. Kolesnichenko, A. E. Korolev, A. A. Samylkin, A. B. Makalkin, and I. N. Ziglina, in Problems of Biosphere Origin and Evolution, Ed. by E. M. Galimov (URSS, Mosccow, 2012), Vol. 2, p. 12 [in Russian].

    Google Scholar 

  11. M. Ya. Marov and A. V. Rusol, J. Mod. Phys. 6, 181 (2015a). http://dx.doi.org/10.4236/jmp.2015.63024

    Article  Google Scholar 

  12. M. Ya. Marov and A. V. Rusol, J. Pure Appl. Phys. 3, 16 (2015b).

    Google Scholar 

  13. L. S. Matthews and T. W. Hyde, IEEE Trans. Plasma Sci. 32, 586 (2004).

    Article  ADS  Google Scholar 

  14. Ya. G. Panovko, Foundations of the Applied Theory of Vibrations and Impact (Mashinostroenie, Leningrad, 1976) [in Russian].

    Google Scholar 

  15. J. D. Perry, E. Gostomski, L. S. Matthews, and T. W. Hyde, Astron. Astrophys. 539, A99 (2012).

    Article  ADS  Google Scholar 

  16. M. Rieth, Nano-Engineering in Science and Technology. An Introduction to the World of Nano-Design (World Scientific, Singapore, 2003).

    Book  Google Scholar 

  17. C. Ringl, E. M. Bringa, D. S. Bertoldi, and H. M. Urbassek, Astrophys. J. 752, 151 (2012).

    Article  ADS  Google Scholar 

  18. A. G. G. M. Tielens, Symp. -Int. Astron. Union 284, 72 (2011).

    Article  Google Scholar 

  19. A. G. G. M. Tielens and L. J. Allamandola, in Physical Processes in Interstellar Clouds, Ed. by G. E. Morfill and M. Sholer (Reidel, Dordrecht, 1987), p.333.

  20. A. G. G. M. Tielens, L. B. F. M. Waters, and T. J. Bernatowicz, ASP Conf. Ser. 341A, 605 (2005).

    ADS  Google Scholar 

  21. K. Wada, H. Tanaka, T. Suyama, H. Kimura, and T. Yamamoto, Astrophys. J. 661, 320 (2007).

    Article  ADS  Google Scholar 

  22. K. Wada, H. Tanaka, T. Suyama, H. Kimura, and T. Yamamoto, Astrophys. J. 677, 1296 (2008).

    Article  ADS  Google Scholar 

  23. K. Wada, H. Tanaka, T. Suyama, H. Kimura, and T. Yamamoto, Astrophys. J. 702, 1490 (2009a).

    Article  ADS  Google Scholar 

  24. K. Wada, H. Tanaka, T. Suyama, H. Kimura, and T. Yamamoto, ASP Conf. Ser. 414, 347 (2009b).

    ADS  Google Scholar 

  25. E. L. Wright, Astrophys. J. 320, 818 (1987).

    Article  ADS  Google Scholar 

  26. E. L. Wright, Astrophys. J. 346, L89 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rusol.

Additional information

Original Russian Text © M.Ya. Marov, A.V. Rusol, 2018, published in Pis’ma v Astronomicheskii Zhurnal, 2018, Vol. 44, No. 7, pp. 517–524.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marov, M.Y., Rusol, A.V. Estimating the Parameters of Collisions between Fractal Dust Clusters in a Gas–Dust Protoplanetary Disk. Astron. Lett. 44, 474–481 (2018). https://doi.org/10.1134/S1063773718070046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773718070046

Keywords

Navigation