Skip to main content
Log in

Broadband spectrum of the X-ray nova SWIFT J174510.8-262411 at the decaying phase of its outburst

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Results of quasi-simultaneous SWIFT and RTT-150 observations for the X-ray nova SWIFT J174510.8-262411 in May–June 2013 at the decaying phase of its outburst are presented. It is shown that the nova spectrum can be fitted in a very wide energy range (from the infrared z and i bands to hard X-rays) by a single power law attenuated due to absorption but without any traces of the presence of a soft (blackbody) component. The presence of such a component is suggested by the generally accepted models of disk accretion onto a black hole in a binary system. The observation of a single power-law spectrum may imply that synchrotron radiation from the source’s relativistic jets makes a major contribution to its flux or that the accretion disk is everywhere hot, optically thin, and radiates nonthermally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Arnaud, in Proceedings of the ASP Conference on Astronomical Data Analysis Software and Systems V, Ed. by G. Jacoby and J. Barnes (ASP, San Francisco, 1996), Vol. 101, p. 17.

  2. S. D. Barthelmy, L. M. Barbier, J. R. Cummings, et al., Space Sci. Rev. 120, 143 (2005).

    Article  ADS  Google Scholar 

  3. T. Belloni, M. Cadolle Bel, P. Casella, et al., Astron. Telegram 4450 (2012).

  4. D. N. Burrows, J. E. Hill, J. A. Nousek, et al., Space Sci. Rev. 120, 165 (2005).

    Article  ADS  Google Scholar 

  5. A. M. Cherepashchuk, Phys. Usp. 46, 335 (2003).

    Article  ADS  Google Scholar 

  6. S. Corbel, M. Coriat, C. Brocksopp, A. K. Tzioumis, R. P. Fender, et al., Mon. Not. R. Astron. Soc. 428, 2500 (2013).

    Article  ADS  Google Scholar 

  7. M. Coriat, S. Corbel, M. M. Buxton, C. D. Bailyn, J. A. Tomsick, et al., Mon. Not. R. Astron. Soc. 400, 123 (2009).

    Article  ADS  Google Scholar 

  8. J. R. Cummings, C. Gronwall, D. Grupe, et al., GCN Circ. 13774 (2012a).

  9. J. R. Cummings, S. D. Barthelmy, W. H. Baumgartner, et al., GCN Circ. 13775 (2012b).

  10. B. T. Draine, Ann. Rev. Astron. Astrophys. 41, 241 (2003).

    Article  ADS  Google Scholar 

  11. A. A. Esin, E. Kuulkers, J. E. McClintock, and R. Narayan, Astrophys. J. 532, 1069 (2000).

    Article  ADS  Google Scholar 

  12. P. A. Evans, R. Willingale, J. P. Osborne, et al., Astron. Astrophys. 519, A102 (2010).

    Article  ADS  Google Scholar 

  13. P. Gandhi, K. Makishima, M. Durant, A. C. Fabian, V. S. Dhillon, et al., Mon. Not. R. Astron. Soc. 390, L29 (2008).

    Article  ADS  Google Scholar 

  14. N. Gehrels, G. Chincarini, P. Giommi, et al., Astrophys. J. 611, 1005 (2004).

    Article  ADS  Google Scholar 

  15. S. A. Grebenev, A. V. Prosvetov, and R. A. Sunyaev, Astron. Lett. 39, 367 (2013).

    Article  ADS  Google Scholar 

  16. S. A. Grebenev and R. A. Sunyaev, Astron. Telegram 4401 (2012).

  17. R. I. Hynes, C. A. Haswell, W. Cui, C. R. Shrader, K. O’Brien, et al., Mon. Not. R. Astron. Soc. 345, 292 (2003).

    Article  ADS  Google Scholar 

  18. G. Kanbach, C. Straubmeier, H. C. Spruit, and T. Belloni, Nature 414, 180 (2001).

    Article  ADS  Google Scholar 

  19. E. Kuulkers, J. Chenevez, J. Alfonso-Garzon, et al., Astron. Telegram 4804 (2013).

  20. R. Morrison and D. McCammon, Astrophys. J. 270, 119 (1983).

    Article  ADS  Google Scholar 

  21. B. Sbarufatti, J. A. Kennea, M. C. Stroh, D. N. Burrows, P. A. Evans, et al., Astron. Telegram 4782 (2013).

  22. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  23. S. L. Shapiro, A. P. Lightman, and D. M. Eardley, Astrophys. J. 204, 187 (1976).

    Article  ADS  Google Scholar 

  24. V. F. Suleimanov, G. V. Lipunova, and N. I. Shakura, Astron. Astrophys. 491, 267 (2008).

    Article  ADS  Google Scholar 

  25. R. A. Sunyaev and L. G. Titarshuk, Astron. Astrophys. 86, 121 (1980).

    ADS  Google Scholar 

  26. J. A. Tomsick, E. Kalemci, P. Kaaret, S. Markoff, S. Corbel, et al., Astrophys. J. 680, 593 (2008).

    Article  ADS  Google Scholar 

  27. J. A. Tomsick, M. DelSanto, and T. Belloni, Astron. Telegram 4393 (2012).

  28. I. Vovk, C. Ferrigno, E. Drave, et al., Astron. Telegram 4381 (2012).

  29. S. D. Vrtilek, J. C. Raymond, M. R. Garcia, F. Verbunt, and G. Hasinger, Astron. Astrophys. 235, 162 (1990).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Grebenev.

Additional information

Original Russian Text © S.A. Grebenev, A.V. Prosvetov, R.A. Burenin, 2014, published in Pis’ma v Astronomicheskiı Zhurnal, 2014, Vol. 40, No. 4, pp. 198–204.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grebenev, S.A., Prosvetov, A.V. & Burenin, R.A. Broadband spectrum of the X-ray nova SWIFT J174510.8-262411 at the decaying phase of its outburst. Astron. Lett. 40, 171–176 (2014). https://doi.org/10.1134/S106377371404001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377371404001X

Keywords

Navigation