Skip to main content
Log in

Dynamics and energetics of the thermal and nonthermal components in the solar flare of January 20, 2005, based on data from hard electromagnetic radiation detectors onboard the CORONAS-F satellite

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Based on data from the SONG and SPR-N multichannel hard electromagnetic radiation detectors onboard the CORONAS-F space observatory and the X-ray monitors onboard GOES satellites, we have distinguished the thermal and nonthermal components in the X-ray spectrum of an extreme solar flare on January 20, 2005. In the impulsive flare phase determined from the time of the most efficient electron and proton acceleration, we have obtained parameters of the spectra for both components and their variations in the time interval 06:43–06:54 UT. The spectral index in the energy range 0.2–2 MeV for a single-power-law spectrum of accelerated electrons is shown to have been close to 3.4 for most of the time interval under consideration. We have determined the time dependence of the lower energy cutoff in the energy spectrum of nonthermal photons E γ0(t) at which the spectral flux densities of the thermal and nonthermal components become equal. The power deposited by accelerated electrons into the flare volume has been estimated using the thick-target model under two assumptions about the boundary energy E 0 of the electron spectrum: (i) E 0 is determined by E γ0(t) and (ii) E 0 is determined by the characteristic heated plasma energy (≈5kT (t)). The reality of the first assumption is proven by the fact that plasma cooling sets in at a time when the radiative losses begin to prevail over the power deposited by electrons only in this case. Comparison of the total energy deposited by electrons with a boundary energy E γ0(t) with the thermal energy of the emitting plasma in the time interval under consideration has shown that the total energy deposited by accelerated electrons at the beginning of the impulsive flare phase before 06:47 UT exceeds the thermal plasma energy by a factor of 1.5–2; subsequently, these energies become approximately equal and are ∼(4–5) × 1030 erg under the assumption that the filling factor is 0.5–0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Battaglia, L. Fletcher, and A. O. Benz, Astron. Astrophys. 498, 891 (2009).

    Article  ADS  Google Scholar 

  2. A. V. Bogomolov, Yu. I. Denisov, Yu. I. Logachev, et al., Izv. RAN, ser. Fiz. 67, 1422 (2003).

    Google Scholar 

  3. J. C. Brown, Solar Phys. 18, 489 (1971).

    Article  ADS  Google Scholar 

  4. J. C. Brown, D. S. Spicer, and D. B. Melrose, Astrophys. J. 228, 592 (1979).

    Article  ADS  Google Scholar 

  5. P. J. Cargill and J. A. Klimchuk, Astrophys. J. 478, 799 (1997).

    Article  ADS  Google Scholar 

  6. Yu. I. Denisov, S. N. Kuznetsov, Yu. I. Logachev, et al., Astron. Vestnik 37, 127 (2003).

    Google Scholar 

  7. K. P. Dere, Solar Phys. 75, 189 (1982).

    Article  ADS  Google Scholar 

  8. A. G. Emslie, Astrophys. J. 595, L19 (2003).

    Article  Google Scholar 

  9. N. Gopalswamy, H. Xie, S. Yashiro, and I. Usoskin, in Proc. of the 29th Int. Cosmic Ray Conf. (Pune, 2005), Vol. 1, p. 169.

    Google Scholar 

  10. V. V. Grechnev, V. G. Kurt, I. M. Chertok, et al., Solar Phys. 252, 149 (2008); http://arxiv.org/abs/0806.4424.

    Article  ADS  Google Scholar 

  11. P. C. Grigis and A. O. Benz, Astrophys. J. 683, 1180 (2008).

    Article  ADS  Google Scholar 

  12. G.D. Holman, L. Sui, R.A. Schwartz, and A. G. Emslie, Astrophys. J. 595, L97 (2003).

    Article  ADS  Google Scholar 

  13. S. N. Kuznetsov, A. V. Bogomolov, Yu. P. Gordeev, et al., Izv. RAN, Ser. Fiz. 59, 2 (1995).

    Google Scholar 

  14. S. N. Kuznetsov, V. G. Kurt, B. Yu. Yushkov, and K. Kudela, in Proc. of the 30th Int. Cosmic Ray Conf. (Merida, 2008), Vol. 1, p. 121.

  15. C. H. Miklenic, A.M. Veronig, and B. Vršnak, Astron. Astrophys. 499, 893 (2009).

    Article  ADS  Google Scholar 

  16. P. Saint-Hilaire and A. O. Benz, Astron. Astrophys. 435, 743 (2005).

    Article  ADS  Google Scholar 

  17. G.M. Simnett, Astron. Astrophys. 445, 715 (2006).

    Article  ADS  Google Scholar 

  18. M. Takahashi and T. Watanabe, Adv. Space Res. 25, 1833 (2000).

    Article  ADS  Google Scholar 

  19. A. M. Veronig, J. C. Brown, B. R. Dennis, et al., Astrophys. J. 621, 482 (2005).

    Article  ADS  Google Scholar 

  20. I. S. Veselovsky, M. I. Panasyuk, G. A. Bazilevskaya, et al., Kosmich. Issled. 42, 453 (2004).

    Google Scholar 

  21. V.V. Zharkova and M. Gordovskyy, Astrophys. J. 651, 553 (2006).

    Article  ADS  Google Scholar 

  22. I.A. Zhitnik, Yu. I. Logachev, A.V. Bogomolov, et al., Astron. vestnik 40, 108 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kurt.

Additional information

Original Russian Text © V.G. Kurt, S.I. Svertilov, B.Yu. Yushkov, A.V. Bogomolov, V.V. Grechnev, V.I. Galkin, V.V. Bogomolov, K. Kudela, Yu.I. Logachev, O.V. Morozov, I.N. Myagkova, 2010, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2010, Vol. 36, No. 4, pp. 292–303.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurt, V.G., Svertilov, S.I., Yushkov, B.Y. et al. Dynamics and energetics of the thermal and nonthermal components in the solar flare of January 20, 2005, based on data from hard electromagnetic radiation detectors onboard the CORONAS-F satellite. Astron. Lett. 36, 280–291 (2010). https://doi.org/10.1134/S1063773710040067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773710040067

Key words

Navigation