Skip to main content
Log in

Circumstellar Na I and Ca II absorption lines of type Ia supernovae in the symbiotic scenario

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The formation of circumstellar Na I and Ca II resonance absorption lines in a type Ia supernova is studied in the case where the supernova explodes in a binary system with a red giant. The model suggests a spherically symmetric wind and takes into account the nonstationary ionization and heating of the wind by X rays from the shock wave and by gamma rays from radioactive 56Ni decay. For wind densities typical of a red giant, the expected optical depth of the wind in Na I lines is shown to be too small (τ < 10−3) for their detection. Under the same conditions, the optical depth of the predicted Ca II 3934 Å absorption line is sufficient for its detection (τ > 0.1). It is concluded that the Na I and Ca II absorption lines detected in SN 2006X could not be formed in the red giant wind and are most likely related to clouds at distances exceeding the dust evaporation radius (r > 1017 cm). An upper limit for the rate of mass loss through a stationary wind with velocity u has been obtained from the absence of Ca II absorption lines in SN 2006X unrelated to the similar Na I components: < 10−8 (u/10 km s−1) M yr−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Chevalier, Astrophys. J. 259, 302 (1982).

    Article  ADS  Google Scholar 

  2. N. N. Chugai, Astron. Zh. 63, 951 (1986) [Sov. Astron. 30, 563 (1986)].

    ADS  Google Scholar 

  3. S. Collin-Souffrin and A. M. Dumont, Astron. Astrophys. 213, 29 (1989).

    ADS  Google Scholar 

  4. G. Crinklaw, S. R. Federman, and C. L. Joseph, Astrophys. J. 424, 748 (1994).

    Article  ADS  Google Scholar 

  5. R. J. Cumming, P. Lundqvist, L. J. Smith, et al., Mon. Not. R. Astron. Soc. 283, 1355 (1996).

    ADS  Google Scholar 

  6. D. Dobrzycka, S. J. Kenyon, D. Proga, et al., Astron. J. 111, 2090 (1996).

    Article  ADS  Google Scholar 

  7. I. Hachisu and M. Kato, Astrophys. J. 536, L93 (2000).

    Article  ADS  Google Scholar 

  8. P. Hoeflich, E. Mueller, and A. Khokhlov, Astron. Astrophys., Suppl. Ser. 97, 221 (1993).

    ADS  Google Scholar 

  9. J. P. Hughes, N. Chugai, R. Chevalier, et al., Astrophys. J. 670, 1260 (2007).

    Article  ADS  Google Scholar 

  10. I. Iben and A. V. Tutukov, Astrophys. J., Suppl. Ser. 54, 335 (1984).

    Article  ADS  Google Scholar 

  11. K. E. Korreck, E. Kellogg, and J. L. Sokoloski, AIP Conf. Proc. 924, 903 (2007).

    Article  ADS  Google Scholar 

  12. C. Kozma and C. Fransson, Astrophys. J. 390, 602 (1992).

    Article  ADS  Google Scholar 

  13. E. Livne, Y. Tuchman, and C. J. Wheeler, Astrophys. J. 399, 665 (1992).

    Article  ADS  Google Scholar 

  14. E. Marietta, A. Burrows, and B. Fryxell, Astrophys. J., Suppl. Ser. 128, 615 (2000).

    Article  ADS  Google Scholar 

  15. D. K. Nadyozhin, Astrophys. Space Sci. 112, 225 (1985).

    Article  MATH  ADS  Google Scholar 

  16. N. Panagia, S. D. Van Dyk, K. W. Weiler, et al., Astrophys. J. 646, 369 (2006).

    Article  ADS  Google Scholar 

  17. F. Patat, P. Chandra, R. Chevalier, et al., Science 315, 924 (2007).

    Article  ADS  Google Scholar 

  18. A. W. A. Pauldrach, M. Duschinger, P. A. Mazzali, et al., Astron. Astrophys. 312, 525 (1996).

    ADS  Google Scholar 

  19. R. S. Sutherland and M. A. Dopita, Astrophys. J., Suppl. Ser. 88, 253 (1993).

    Article  ADS  Google Scholar 

  20. P. G. Sutherland and J. C. Wheeler, Astrophys. J. 280, 282 (1984).

    Article  ADS  Google Scholar 

  21. A. V. Tutukov and L. R. Yungel’son, Astrofizika 12, 521 (1976) [Astrophys. 12, 342 (1976)].

    ADS  Google Scholar 

  22. D. A. Verner, G. J. Ferland, K. T. Korista, and D. G. Yakovlev, Astrophys. J. 465, 487 (1996).

    Article  ADS  Google Scholar 

  23. X. Wang, W. Li, A. V. Filippenko, et al., arXiv:0708.0140 (2007).

  24. J. Whelan and I. Iben, Astrophys. J. 186, 1007 (1973).

    Article  ADS  Google Scholar 

  25. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1963; Academic, New York, 1966, 1967), Vols. 1 and 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Chugai.

Additional information

Original Russian Text © N.N. Chugai, 2008, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2008, Vol. 34, No. 6, pp. 428–436.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chugai, N.N. Circumstellar Na I and Ca II absorption lines of type Ia supernovae in the symbiotic scenario. Astron. Lett. 34, 389–396 (2008). https://doi.org/10.1134/S1063773708060030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773708060030

PACS numbers

Key words

Navigation