Skip to main content
Log in

Neutron stars in globular clusters: Formation and observational manifestations

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Population synthesis is used to model the number of neutron stars in globular clusters that are observed as low-mass X-ray sources and millisecond radio pulsars. The dynamical interactions between binary and single stars in a cluster are assumed to take place only with a continuously replenished “background” of single stars whose properties keep track of the variations in parameters of the cluster as a whole and the evolution of single stars. We use the hypothesis that the neutron stars forming in binary systems from components with initial masses of ∼8–12 M during the collapse of degenerate O-Ne-Mg cores through electron captures do not acquire a high space velocity. The remaining neutron stars (from single stars with masses >8 M or from binary components with masses >12 M ) are assumed to be born with high space velocities. According to this hypothesis, a sizeable fraction of the forming neutron stars remain in globular clusters (about 1000 stars in a cluster with a mass of 5 × 105 M ). The number of millisecond radio pulsars forming in such a cluster in the case of accretion-driven spinup in binary systems is found to be ∼10, in agreement with observations. Our modeling also reproduces the observed shape of the X-ray luminosity function for accreting neutron stars in binary systems with normal and degenerate components and the distribution of spin periods for millisecond pulsars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Bailyn and J. E. Grindlay, Astrophys. J. 353, 159 (1990).

    Article  ADS  Google Scholar 

  2. D. Bhattacharya and E. P. J. van den Heuvel, Phys. Rep. 203, 1 (1991).

    Article  ADS  Google Scholar 

  3. G. S. Bisnovatyi-Kogan, Usp. Fiz. Nauk 176, 59 (2006).

    Google Scholar 

  4. G. S. Bisnovatyi-Kogan and B. V. Komberg, Astron. Zh. 51, 373 (1974) [Sov. Astron. 18, 217 (1974)].

    ADS  Google Scholar 

  5. G. S. Bisnovatyi-Kogan and A. V. Tutukov, Astron. Zh. 81, 797 (2004) [Astron. Rep. 48, 724 (2004)].

    Google Scholar 

  6. S. Bogdanov, J. E. Grindlay, and M. van den Berg, Astrophys. J. 630, 1029 (2005).

    Article  ADS  Google Scholar 

  7. F. Camillo and F. A. Rasio, Binary Radio Pulsars, Ed. by F. Rasio and I. H. Stairs, Astron. Soc. Pac. Conf. Ser., p. 328 (2005); astro-ph/0501226.

  8. E. M. Caskett, R. Wijnands, C. O. Heinke, et al., Mon. Not. R. Astron. Soc. (in press); astro-ph/0512168.

  9. J. D. M. Dewi, Ph. Podsiadlowski, and O. R. Pols, Mon. Not. R. Astron. Soc. 363, 71 (2005).

    Article  ADS  Google Scholar 

  10. N. V. Dunina-Barkovskaya, V. S. Imshennik, and S. I. Blinnikov, Pis’ma Astron. Zh. 27, 412 (2001) [Astron. Lett. 27, 353 (2001)].

    Google Scholar 

  11. G. Fabbiano, Ann. Rev. Astron. Astrophys. (in press); astro-ph/0511481.

  12. J. M. Fregeau, M. A. Gurkan, and F. A. Rasio, astro-ph/0512032 (2005).

  13. M. R. Gilfanov, Mon. Not. R. Astron. Soc. 349, 146 (2004).

    Article  ADS  Google Scholar 

  14. J. E. Grindlay, Binary Radio Pulsars, Ed. by F. Rasio and I. H. Stairs, Astron. Soc. Pac. Conf. Ser., p. 328 (2005); astro-ph/0412670.

  15. J. E. Grindlay and C. D. Bailyn, Nature 336, 48 (1988).

    Article  ADS  Google Scholar 

  16. J. E. Grindlay, S. Portegies Zwart, and S. McMillan, Nature (in press); astro-ph/0512654.

  17. C. O. Heinke, J. E. Grindlay, P. D. Edmonds, et al., Astrophys. J. 625, 796 (2005).

    Article  ADS  Google Scholar 

  18. D. J. Helfand, M. A. Ruderman, and J. Shaham, Nature 304, 423 (1983).

    Article  ADS  Google Scholar 

  19. G. Hobbs, D. R. Lorimer, A. G. Lyne, and M. Kramer, Mon. Not. R. Astron. Soc. 360, 974 (2005).

    Article  ADS  Google Scholar 

  20. I. Iben, Jr. and A. V. Tutukov, Astrophys. J. 456, 738 (1996).

    Article  ADS  Google Scholar 

  21. N. Ivanova, K. Belczynski, J. M. Fregeau, and F. Rasio, Mon. Not. R. Astron. Soc. 358, 572 (2005).

    Article  ADS  Google Scholar 

  22. S. S. Kim, H. M. Lee, and J. Goodman, Astrophys. J. 495, 786 (1998).

    Article  ADS  Google Scholar 

  23. F. S. Kitaura, H.-Th. Janka, and W. Hillebrandt, Astron. Astrophys. (in press); astro-ph/0512065.

  24. A. G. Kuranov and K. A. Postnov, Pis’ma Astron. Zh. 30, 164 (2004) [Astron. Lett. 30, 140 (2004)].

    Google Scholar 

  25. D. Lai, Physics of Neutron Star Interiors, Ed. by D. Blaschke, N. K. Glendenning, and A. Sedrakian (Springer, 2001), Lect. Notes Phys. 578, 424 (2001).

  26. V. M. Lipunov and K. A. Postnov, Astrophys. Space Sci. 106, 103 (1984).

    Article  ADS  Google Scholar 

  27. V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, Astrophys. Space Sci. Rev. 9, 1 (1996).

    Google Scholar 

  28. D. Lorimer, Liv. Rev. Rel. 8, 7 (2005); astro-ph/0511258.

    Google Scholar 

  29. R. W. Michie, Mon. Not. R. Astron. Soc. 125, 127 (1963).

    MathSciNet  ADS  Google Scholar 

  30. S. Miyaji, K. Nomoto, K. Yokoi, and D. Sugimoto, Publ. Astron. Soc. Jpn. 32, 303 (1980).

    ADS  Google Scholar 

  31. H. Mouri and Y. Taniguchi, Astrophys. J. 580, 844 (2002).

    Article  ADS  Google Scholar 

  32. E. Pfahl, S. Rappaport, and Ph. Podsiadlowski, Astrophys. J. 573, 283 (2002).

    Article  ADS  Google Scholar 

  33. Ph. Podsiadlowski, J. D. M. Dewi, P. Lesaffre, et al., Mon. Not. R. Astron. Soc. 361, 1243 (2005).

    Article  ADS  Google Scholar 

  34. Ph. Podsiadlowski, N. Langer, A. J. T. Poelarends, et al., Astrophys. J. 612, 1044 (2004).

    Article  ADS  Google Scholar 

  35. O. Pols, K.-P. Schroeder, J. R. Hurley, et al., Mon. Not. R. Astron. Soc. 298, 525 (1998).

    Article  ADS  Google Scholar 

  36. D. Pooley, W. H. G. Lewin, S. F. Anderson, et al., Astrophys. J. 591, 131 (2003).

    Article  ADS  Google Scholar 

  37. K. A. Postnov and A. G. Kuranov, Pis’ma Astron. Zh. 31, 10 (2005) [Astron. Lett. 31, 7 (2005)].

    Google Scholar 

  38. C. Ritossa, E. Carcia-Berro, and I. Iben, Jr., Astrophys. J. 515, 381 (1999).

    Article  ADS  Google Scholar 

  39. L. Spitzer, Astrophys. J. 158, 139 (1969).

    Article  ADS  Google Scholar 

  40. A. V. Tutukov, N. N. Chugai, and L. R. Yungelson, Pis’ma Astron. Zh. 10, 586 (1984) [Sov. Astron. Lett. 10, 244 (1984)].

    ADS  Google Scholar 

  41. E. P. J. van den Heuvel, J. Astrophys. Astron. 5, 209 (1984).

    ADS  Google Scholar 

  42. E. P. J. van den Heuvel, in Proceedings of the 5th INTEGRAL Workshop, Ed. by V. Schenfelder, G. Lichti, and C. Winkler, ESA SP-552 (2004), p. 185.

  43. E. P. J. van den Heuvel, J. van Paradijs, and R. E. Taam, Nature 322, 153 (1986).

    Article  ADS  Google Scholar 

  44. F. Verbunt and C. Bassa, Chin. J. Astron. Astrophys. 3, 225 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.G. Kuranov, K.A. Postnov, 2006, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2006, Vol. 32, No. 6, pp. 438–451.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuranov, A.G., Postnov, K.A. Neutron stars in globular clusters: Formation and observational manifestations. Astron. Lett. 32, 393–405 (2006). https://doi.org/10.1134/S106377370606003X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377370606003X

PACS numbers

Key words

Navigation