Skip to main content
Log in

Laboratory Simulation of Photosynthesis in a Wide Range of Electromagnetic and Radiation Environment Parameters

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The problem of studying the limits of stability and mechanisms of adaptation of living systems to environmental parameters that vary over a wide range is briefly analyzed. The main attention is focused on the analysis of the electromagnetic environment and background radiation. These factors vary relatively little on the modern Earth, which leads to their insufficient knowledge. At the same time, they present serious challenges for future space missions. One of the main methods for studying the influence of such factors on living organisms is laboratory simulation. Previous experiments have demonstrated the need to develop a new laboratory setup, the requirements for the parameters of which are presented in this paper. In general, the setup will have a high potential for solving the problems of modeling the effect of astro-geophysical factors on the physiological state of living organisms and, in particular, the activity of photosynthesis in higher plants. The implementation of the proposed program of laboratory simulation experiments will allow us to advance in understanding the problems of life evolution, the mechanisms of the possible influence of solar activity on the biosphere, and studies of the role of the biosphere in global climate changes of planets at various time horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. G. Elhalel, C. Price, D. Fixier, and A. Shainberg, Nat. Sci. Rep. 9, 1645 (2019).

    ADS  Google Scholar 

  2. C. Doglioni, J. Pignatti, and M. Coleman, Geosci. Front. 7, 865 (2016).

    Article  Google Scholar 

  3. Y. Berkovich, I. Konovalova, S. O. Smolyanina, A. N. Erokhin, O. V. Avercheva, E. M. Bassarskaya, G. V. Kochetova, T. V. Zhigalova, O. S. Yakovleva, and I. G. Tarakanov, REACH 6, 11 (2017).

    Article  Google Scholar 

  4. E. N. Baranova, M. A. Levinskikh, and A. A. Gulevich, Life 9, 81 (2019).

    Article  ADS  Google Scholar 

  5. V. de Micco, C. Arena, D. Pignalosa, and M. Durante, Radiat. Environ. Biophys. 50, 1 (2011).

    Article  Google Scholar 

  6. M. E. Maffei, Front. Plant Sci. 5, 445 (2014).

    Article  Google Scholar 

  7. S. V. Gudkov, M. A. Grinberg, V. S. Sukhov, and V. A. Vodeneev, J. Environ. Radioact. 202, 8 (2019).

    Article  Google Scholar 

  8. M. Sarraf, S. Kataria, H. Taimourya, L. O. Santos, R. D. Menegatti, M. Jain, M. Ihtisham, and S. Liu, Plants 9, 1139 (2020).

    Article  Google Scholar 

  9. A. De Souza-Torres, L. Sueiro-Pelegrín, M. Zambrano-Reyes, I. Macías-Socarras, M. González-Posada, and D. García-Fernández, Int. J. Rad. Biol. 96, 951 (2020).

    Article  Google Scholar 

  10. P. Y. Volkova, E. V. Bondarenko, and E. Kazakova, Curr. Opin. Toxicol. 30, 100334 (2022).

  11. V. N. Binhi and A. B. Rubin, Cells 11, 274 (2022).

    Article  Google Scholar 

  12. I. Kovalchuk, J. Molinier, Y. Yao, A. Arkhipov, and O. Kovalchuk, Mutat. Res. 624, 101 (2007).

    Article  Google Scholar 

  13. E. J. Goh, J. B. Kim, W. J. Kim, B. K. Ha, S. H. Kim, S. Y. Kang, Y. W. Seo, and D. S. Kim, Radiat. Environ. Biophys. 53, 677 (2014).

    Article  Google Scholar 

  14. M. V. Kryvokhyzha, K. V. Krutovsky, and N. M. Rashydov, Int. J. Rad. Biol. 95, 626 (2019).

    Article  Google Scholar 

  15. M. Grinberg, S. V. Gudkov, I. V. Balalaeva, E. Gromova, Y. V. Sinitsyna, V. S. Sukhov, and V. A. Vodeneev, Environ. Exp. Bot. 184, 104378 (2021).

  16. V. Sukhov, E. Sukhova, Y. Sinitsyna, E. Gromova, N. Mshenskaya, A. Ryabkova, N. Ilin, V. Vodeneev, E. Mareev, and C. Price, Cells 10, 149 (2021).

    Article  Google Scholar 

  17. E. Sukhova, E. Gromova, L. Yudina, A. Kior, Y. Vetrova, N. Ilin, E. Mareev, V. Vodeneev, and V. Sukhov, Plants 10, 2207 (2021).

    Article  Google Scholar 

  18. M. Grinberg, M. Mudrilov, E. Kozlova, V. Sukhov, F. Sarafanov, A. Evtushenko, N. Ilin, V. Vodeneev, C. Price, and E. Mareev, Plant Signal. Behav. 17, 2021664 (2022).

  19. J. L. Araus, S. C. Kefauver, O. Vergara-Díaz, A. Gracia-Romero, F. Z. Rezzouk, J. Segarra, M. L. Buchaillot, M. Chang-Espino, T. Vatter, R. Sanchez-Bragado, J. A. Fernandez-Gallego, M. D. Serret, and J. Bort, J. Integr. Plant. Biol. 64, 592 (2022).

    Google Scholar 

  20. D. Sun, K. Robbins, N. Morales, Q. Shu, and H. Cen, Trends Plant. Sci. 27, 191 (2022).

    Article  Google Scholar 

  21. F. Tanner, S. Tonn, J. de Wit, G. van den Ackerveken, B. Berger, and D. Plett, Plant Methods 18, 35 (2022).

    Article  Google Scholar 

  22. K. Maxwell and G. N. Johnson, J. Exp. Bot. 51, 659 (2000).

    Article  Google Scholar 

  23. A. E. Huber and T. L. Bauerle, J. Exp. Bot. 67, 2063 (2016).

    Article  Google Scholar 

  24. S. K. Chatterjee, O. Malik, and S. Gupta, Biosensors (Basel) 8, 83 (2018).

    Article  Google Scholar 

Download references

Funding

The study was carried out as part of the project “Experimental Laboratory Astrophysics and Geophysics” of the National Center for Physics and Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Mareev.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinberg, M.A., Vodeneev, V.A., Il’in, N.V. et al. Laboratory Simulation of Photosynthesis in a Wide Range of Electromagnetic and Radiation Environment Parameters. Astron. Rep. 67, 71–77 (2023). https://doi.org/10.1134/S106377292301002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377292301002X

Keywords:

Navigation