Skip to main content
Log in

Evolution of the H2O and OH Maser Emission in W75 N

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The results of a study of H2O and OH maser emission in the complex region of active star formation W75 N are presented. Observations were obtained using the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia) and the Nan3ay radio telescope (France). Flaring H2O maser features may be identified with maser spots associated with the sources VLA 1 and VLA 2. Themain H2O flares occurred in VLA 1. The flare emission was associated with either maser clusters having closely spaced radial velocities and sizes up to ~2 AU or individual features. The maser emission is generated in a medium where turbulence on various scales is present. Analysis of the line shapes during flare maxima does not indicate the presence of the simplest structures—homogeneous maser condensations. Strong variability of the OH maser emission was observed. Zeeman splitting of the 1665-MHz line was detected for several features of the same cluster at a radial velocity of +5.5 km/s. The mean line-of-sight magnetic field in this cluster is ~0.5 mG, directed away from the observer. Flares of the OH masers may be due to gas compression at a shock or MHD wave front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Torrelles, J. F. Gómez, L. F. Rodríguez, P. T. P. Ho, S. Curiel, and R. Vázquez, Astrophys. J. 489, 744 (1997).

    Article  ADS  Google Scholar 

  2. C. G. Wynn-Williams, E. E. Becklin, and G. Neugebauer, Astrophys. J. 187, 473 (1974).

    Article  ADS  Google Scholar 

  3. A. D. Haschick, M. J. Reid, B. F. Burke, J. M. Moran, and G. Miller, Astrophys. J. 244, 76 (1981).

    Article  ADS  Google Scholar 

  4. G. Surcis, W. H. T. Vlemmings, and H. Dodson, Astron. Astrophys. 506, 757 (2009).

    Article  ADS  Google Scholar 

  5. G. Surcis, W. H. T. Vlemmings, H. J. van Langevelde, C. Goddi, J. M. Torrelles, J. Cantó, S. Curiel, S.-W. Kim, and J.-S. Kim, Astron. Astrophys. 565, L8 (2014).

    Article  ADS  Google Scholar 

  6. J. M. Torrelles, L. A. Patel, G. Anglada, J. F. Gómez, P. T. P. Ho, L. Lara, A. Alberdi, J. Cantó, S. Curiel, G. Garay, and L. F. Rodríguez, Astrophys. J. 598, L115 (2003).

    Article  ADS  Google Scholar 

  7. E. E. Lekht, V. I. Slysh, and V. V. Krasnov, Astron. Rep. 51, 967 (2007).

    Article  ADS  Google Scholar 

  8. E. E. Lekht, V. I. Slysh, and V. V. Krasnov, Astron. Rep. 53, 420 (2009).

    Article  ADS  Google Scholar 

  9. M. Szymczak and E. Gérard, Astron. Astrophys. 494, 117 (2009).

    Article  ADS  Google Scholar 

  10. W. T. Sullivan III and J. H. Kerstholt, Astron. Astrophys. Suppl. Ser. 26, 399 (1976).

    ADS  Google Scholar 

  11. A. V. Alakoz, V. I. Slysh, M. V. Popov, and I. E. Val’tts, Astron. Lett. 31, 375 (2005).

    Article  ADS  Google Scholar 

  12. A. L. Argon, M. J. Reid, and K. M. Menten, Astrophys. J. Suppl. 129, 159 (2000).

    Article  ADS  Google Scholar 

  13. V. L. Fish, M. Gray, W. M. Goss, and A. M. S. Richards, Mon. Not. R. Astron. Soc. 417, 555 (2011).

    Article  ADS  Google Scholar 

  14. V. I. Slysh, V. Migenes, I. E. Val’tts, S. Yu. Lyubchenko, S. Horiuchi, V. I. Altunin, E. B. Fomalont, and M. Inoue, Astrophys. J. 564, 317 (2002).

    Article  ADS  Google Scholar 

  15. B. Hutawarakorn, R. J. Cohen, and G. C. Brebner, Mon. Not. R. Astron. Soc. 330, 349 (2002).

    Article  ADS  Google Scholar 

  16. V. I. Slysh and V. Migenes, Mon. Not. R. Astron. Soc. 369, 1497 (2006).

    Article  ADS  Google Scholar 

  17. E. E. Lekht and R. L. Sorochenko, Sov. Astron. Lett. 10, 307 (1984).

    ADS  Google Scholar 

  18. E. E. Lekht and V. V. Krasnov, Astron. Lett. 26, 38 (2000).

    Article  ADS  Google Scholar 

  19. G. Surcis, W. H. T. Vlemmings, S. Curiel, B. Hutawarakorn Kramer, J. M. Torrelles, and A. P. Sarma, Astron. Astrophys. 527, A48 (2011).

    Article  ADS  Google Scholar 

  20. J.-S. Kim, S.-W. Kim, T. Kurayama, M. Honma, T. Sasao, G. Surcis, J. Cantó, J. M. Torrelles, and S.-J. Kim, Astrophys. J. 767, 86 (2013).

    Article  ADS  Google Scholar 

  21. L. I. Matveenko, P. H. Diamond, and D. A. Graham, Astron. Rep. 44, 592 (2000).

    Article  ADS  Google Scholar 

  22. E. E. Lekht, Astron. Astrophys. Suppl. Ser. 141, 185 (2000).

    Article  ADS  Google Scholar 

  23. V. I. Slysh, M. I. Pashchenko, G. M. Rudnitskii, V. M. Vitrishchak, and P. Colom, Astron. Rep. 54, 599 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Lekht.

Additional information

Original Russian Text © P. Colom, E.E. Lekht, M.I. Pashchenko, G.M. Rudnitskii, A.M. Tolmachev, 2018, published in Astronomicheskii Zhurnal, 2018, Vol. 95, No. 7, pp. 471–486.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colom, P., Lekht, E.E., Pashchenko, M.I. et al. Evolution of the H2O and OH Maser Emission in W75 N. Astron. Rep. 62, 440–454 (2018). https://doi.org/10.1134/S1063772918060045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772918060045

Navigation