Skip to main content
Log in

Magnetohydrostatic model for a coronal hole

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A model treating a solar coronal hole as an axially symmetrical magnetic formation that is in equilibrium with the surrounding medium is proposed. The model is applicable in the lower corona (to heights of the order of several hundreds of Mm), where the influence of the solar-wind outflow on the state of the system can still be neglected. The magnetic field of the coronal hole is comprised of a relatively weak open flux that varies with height, which extends into interplanetary space, and a closed field, whose flux closes at the chromosphere near the coronal hole. Simple analytical formulas are obtained, which demonstrate for a given equilibrium configuration of the plasma and field the main effect of interest—the lowering of the temperature and density of the gas in the coronal hole compared to their values in the corona at the same geometric height. In particular, it is shown that, at heights of several tens of Mm, the temperature and density of the plasma in the coronal hole are roughly half the corresponding values at the same height in the corona, if the cross-sectional radius of the hole exceeds the scale height in the corona by roughly a factor of 1.5: R h ≈ 1.5H(T 0). In the special case when R h H(T 0), the plasma temperature in the hole is equal to the coronal temperature, and the darkening of the coronal hole is due only to an appreciable reduction of the plasma density in the hole, compared to the coronal density. An analogy of the properties of coronal holes and sunspots is discussed, based on the similarity of the magnetic structures of these formations. In spite of the fundamental difference in the mechanisms for energy transport in coronal holes and sunspots, the equilibrium distributions of the plasma parameters in these formations are determined only by the magnetic and gravitational forces, giving rise to a number of common properties, due to their similar magnetic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coronal Holes and Highspeed Wind Streams, Ed. by J. B. Zirker (Colorado Assoc. Univ. Press, Boulder, USA, 1977).

    Google Scholar 

  2. J. Harvey, A. S. Krieger, A. F. Timothy, and G. S. Vaiana, Mem. Osserv. Astrofis. Arcetri 104, 50 (1975).

    Google Scholar 

  3. K. L. Harvey and F. Recely, Solar Phys. 211, 31 (2002).

    Article  ADS  Google Scholar 

  4. H. Zirin, Astrophys. J. 199, L63 (1975).

    Article  ADS  Google Scholar 

  5. V. Andretta and H. P. Jones, Astrophys. J. 489, 375 (1997).

    Article  ADS  Google Scholar 

  6. R. Centeno, J. Trujillo Bueno, H. Uitenbroek, and M. Collados, Astrophys. J. 677, 742 (2008).

    Article  ADS  Google Scholar 

  7. S. R. S. Cranmer, Living Rev. Solar Phys. 6, No. 3 (2009).

  8. E. I. Mogilevsky, V. N. Obridko, and N. S. Shilova, Solar Phys. 28, 247 (1997).

    Google Scholar 

  9. E. V. Malanushenko, V. P. Malanushenko, and N. N. Stepanyan, Izv. RAN, Ser. Fiz. 59, 38 (1995).

    Google Scholar 

  10. V. N. Obridko and B. D. Shelting, Solar Phys. 270, 297 (2011).

    Article  ADS  Google Scholar 

  11. O. I. Bugaenko, I. A. Zhitnik, A. P. Ignat’ev, et al., Izv. Krymsk. Astorofiz. Observ. 100, 123 (2004).

    Google Scholar 

  12. Z. Wang, M. R. Kundu, and H. Yoshimura, in Solar and Stellar Coronal Structure and Dynamics, A89-20526 06-92 (Nat. Solar Observ., Sunspot, NM, USA:, 1988), p. 458.

    Google Scholar 

  13. V. N. Obridko, in Advances in Solar Connection with Transient Interplanetary Phenomena, Ed. by X. H. Feng, F. S. We, and M. Dryer (Internat. Acad. Publs., Beijing, 1998), p. 41.

    Google Scholar 

  14. Y.-M. Wang, S. H. Hawley, and N. R. Sheeley, Jr., Science 271, 464 (1996).

    Article  ADS  Google Scholar 

  15. R. H. Levine, Astrophys. J. 218, 291 (1977).

    Article  ADS  Google Scholar 

  16. K. Shibata, T. Jokoyamaand, and M. Shimojo, in New Look at the Sun with Emphasis on Advanced Observations of Coronal Dynamics and Flares, Ed. by S. Enome and T. Hirayama, NRO Rep. No. 360 (Nobeyama Radio Observatory, Nagano, Japan, 1994), p. 75.

    Google Scholar 

  17. E. I. Mogilevsky, Geomagn. Aeron. 35, 11 (1995).

    Google Scholar 

  18. G.W. Pneuman, Solar Phys. 28, 247 (1973).

    Article  ADS  Google Scholar 

  19. V. A. Kovalenko, Solar Wind (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  20. Y.-M. Wang and N. R. Sheeley, Jr., Astrophys. J. 355, 726 (1990).

    Article  ADS  Google Scholar 

  21. Y.-M. Wang, N. R. Sheeley, Jr., and A. G. Nash, Nature 347, 439 (1990).

    Article  ADS  Google Scholar 

  22. V. N. Obridko and B. D. Shelting, Solar Phys. 124, 73 (1989).

    Article  ADS  Google Scholar 

  23. V. N. Obridko and B. D. Shel’ting, Sov. Astron. 34, 449 (1990).

    ADS  Google Scholar 

  24. J. M. Wilcox, Space Sci. Rev. 8, 258 (1968).

    Article  ADS  Google Scholar 

  25. A. S. Krieger, A. F. Timothy, and E. C. Roelof, Solar Phys. 29, 505 (1973).

    Article  ADS  Google Scholar 

  26. M. Guhathakurta, E. Sittler, R. Fisher, et al., Geophys. Res. Lett. 26, 2901 (1999).

    Article  ADS  Google Scholar 

  27. S. R. Cranmer, J. L. Kohl, G. Noci, et al., Astrophys. J. 511, 481 (1999).

    Article  ADS  Google Scholar 

  28. H. P. Jones, in Large-scale Structures and Their Role in Solar Activity, Ed. by K. Sankarasubramanian, M. Penn, and A. Pevtsov, ASP Conf. Proc. 346, 229 (2005).

  29. Y.-M. Wang and N. R. Sheeley, Jr., Astrophys. J. 653, 708 (2006).

    Article  ADS  Google Scholar 

  30. Y.-M. Wang, J. B. Biersteker, N. R. Sheeley, et al., Astrophys. J. 660, 882 (2007).

    Article  ADS  Google Scholar 

  31. R. Rosner, W. H. Tucker, and G. S. Vaiana, Astrophys. J. 220, 643 (1978).

    Article  ADS  Google Scholar 

  32. M. J. Aschwanden, Physics of the Solar Corona: An Introduction (Springer, Praxis Publ., Berlin, Chichester, 2004).

    Google Scholar 

  33. O. G. Badalyan and V. N. Obridko, Solar Phys. 238, 271 (2007).

    Article  ADS  Google Scholar 

  34. O. G. Badalyan and V. N. Obridko, Astron. Lett. 33, 182 (2007).

    Article  ADS  Google Scholar 

  35. U. Feldman, Space Sci. Rev. 85, 227 (1998).

    Article  ADS  Google Scholar 

  36. U. Feldman and K. G. Widing, Space Sci. Rev. 107, 665 (2003).

    Article  ADS  Google Scholar 

  37. R. von Steiger, R. F. Wimmer-Schweingruber, J. Geiss, and G. Gloeckler, Adv. Space Res. 15, 3 (1995).

    Article  Google Scholar 

  38. T. H. Zurbuchen, L. A. Fisk, G. Gloeckler, and R. von Steiger, Geophys. Res. Lett. 29, 1352 (2002).

    Article  ADS  Google Scholar 

  39. C.E. DeForest and J.B. Gurman, Astrophys. J. 501, L217 (1998).

    Article  ADS  Google Scholar 

  40. L. Ofman, V. M. Nakariakov, and C. E. De Forest, Astrophys. J. 514, 441 (1999).

    Article  ADS  Google Scholar 

  41. L. Ofman, M. Romoli, G. Poletto, et al., Astrophys. J. 529, 592 (2000).

    Article  ADS  Google Scholar 

  42. V. I. Efremov, L. D. Parfinenko, and A. A. Solov’ev, Astron. Rep. 84, 401 (2007).

    Article  ADS  Google Scholar 

  43. V. I. Efremov, L. D. Parfinenko, and A. A. Solov’ev, Solar Phys. 267, 279 (2010).

    Article  ADS  Google Scholar 

  44. O. G. Badalyan, V. N. Obridko, Ya. Rybak, and Yu. Sykora, Astron. Rep. 51, 659 (2005b)].

    Article  ADS  Google Scholar 

  45. V. N. Obridko, Sunspots and Activity Complexes (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  46. A. A. Solov’ev, Astron. Rep. 41, 131 (1997).

    ADS  Google Scholar 

  47. A. A. Solov’ev, Astron. Rep. 42, 110 (1998).

    ADS  Google Scholar 

  48. M. Collados, V. M. Pullet, B. R. Cabo, et al., Astron. Astrophys. 291, 622 (1994).

    ADS  Google Scholar 

  49. A. A. Solov’ev and E. A. Solov’eva, Astron. Lett. 23, 277 (1997).

    ADS  Google Scholar 

  50. O. K, Moe and P. Maltby, Solar Phys. 8, 275 (1969).

    Article  ADS  Google Scholar 

  51. O. G. Badalyan, Astron. Astrophys. Trans. 9, 205 (1996).

    Article  ADS  Google Scholar 

  52. L. D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  53. B. C. Low, Solar Phys. 65, 147 (1980).

    Article  ADS  Google Scholar 

  54. A. A. Solov’ev, Astron. Rep. 54, 86 (2010).

    Article  ADS  Google Scholar 

  55. H. Hara, S. Tsuneta, L. W. Acton, et al., Adv. Space Res. 17, 231 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Obridko.

Additional information

Original Russian Text © V.N. Obridko, A.A. Solov’ev, 2011, published in Astronomicheskii Zhurnal, 2011, Vol. 88, No. 12, pp. 1238–1248.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obridko, V.N., Solov’ev, A.A. Magnetohydrostatic model for a coronal hole. Astron. Rep. 55, 1144–1154 (2011). https://doi.org/10.1134/S1063772911120092

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772911120092

Keywords

Navigation