Skip to main content
Log in

The stellar population and evolution of galaxies of the NGC 80 group

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Seven early-type galaxies that are members of the massive X-ray group containing NGC 80 have been studied using two-dimensional spectroscopy with the 6-m telescope of the Special Astrophysical Observatory. We searched for evidence for the synchronous secular evolution of the galaxies in the group. The bulges of five of the seven galaxies appear to be old, with the average age of the bulge stars being 10–15 billion years. Signs of a relatively recent star-formation burst are observed in the small S0 galaxy IC 1548, whose average bulge age is 3 billion years and average core age is 1.5 billion years. A circumnuclear polar gas ring was also detected in this galaxy; in its outer regions, it makes a smooth transition to a gas disk that counter-rotates relative to the stars. IC 1548 probably underwent a close interaction, which resulted in its transformation from a spiral to a lenticular galaxy; the same interaction may also have induced the central burst of star formation. In the giant E0 galaxy NGC 83, a compact massive stellar-gas disk with a radius of about 2 kpc and very rapid rotation is observed, with ongoing star formation; the so-called “minor merger” is likely to have occurred there. We conclude that the NGC 80 group is in a state of formation, with the small NGC 83 subgroup “falling into” the large, old NGC 80 subgroup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Kormendy and R. C. Kennicutt, Jr., Ann. Rev. Astron. Astrophys. 42, 603 (2004).

    Article  ADS  Google Scholar 

  2. O. K. Sil’chenko, A. V. Moiseev, V. L. Afanasiev, et al., Astrophys. J. 591, 185 (2003).

    Article  ADS  Google Scholar 

  3. O. K. Sil’chenko, V. L. Afanasiev, V. H. Chavushyan, and J. R. Valdes, Astrophys. J. 577, 668 (2002).

    Article  ADS  Google Scholar 

  4. O. K. Sil’chenko and V. L. Afanasiev, Pis’ma Astron. Zh. 32, 592 (2006) [Astron. Lett. 32, 534 (2006)].

    Google Scholar 

  5. V. L. Afanasiev and O. K. Sil’chenko, Astron. Astrophys. 429, 825 (2005).

    Article  ADS  Google Scholar 

  6. V. L. Afanasiev and O. K. Sil’chenko, Astron. Astrophys. Trans. 26, 311 (2007).

    Article  Google Scholar 

  7. M. Ramella, M. J. Geller, A. Pisano, and L. N. da Costa, Astron. J. 123, 2976 (2002).

    Article  ADS  Google Scholar 

  8. I. P. Dell’Antonio, M. J. Geller, and D. G. Fabricant, Astron. J. 107, 427 (1994).

    Article  ADS  Google Scholar 

  9. A. Mahdavi and M. J. Geller, Astrophys. J. 607, 202 (2004).

    Article  ADS  Google Scholar 

  10. A. Mahdavi, H. Bohringer, M. J. Geller, and M. Ramella, Astrophys. J. 534, 114 (2000).

    Article  ADS  Google Scholar 

  11. G. D. Bothun and R. A. Schommer, Astrophys. J. Lett. 267, L15 (1983).

    Article  ADS  Google Scholar 

  12. V. L. Afanasiev, S. N. Dodonov, and A. V. Moiseev, in: Stellar Dynamics: From Classic to Modern, Ed. by L. P. Osipkov and I. I. Nikiforov (St. Petersburg: St. PetersburgUniv. Press, 2001), p. 103.

    Google Scholar 

  13. G. Worthey, S. M. Faber, J. J. Gonzàlez, and D. Burstein, Astrophys. J. Suppl. Ser. 94, 687 (1994).

    Article  ADS  Google Scholar 

  14. G. Worthey, Astrophys. J. Suppl. Ser. 95, 107 (1994).

    Article  ADS  Google Scholar 

  15. D. Thomas, C. Maraston, and R. Bender, Mon. Not. Roy. Astron. Soc. 339, 897 (2003).

    Article  ADS  Google Scholar 

  16. V. L. Afanasiev and A. V. Moiseev, Pis’ma Astron. Zh. 31, 214 (2005) [Astron. Lett. 31, 194 (2005)].

    Google Scholar 

  17. O. K. Sil’chenko, S. E. Koposov, V. V. Vlasyuk, and O. I. Spiridonova, Astron. Zh. 80, 107 (2003) [Astron. Rep. 47, 88 (2003)].

    Google Scholar 

  18. G. Stasinska and I. Sodre, Jr., Astron. Astrophys. 374, 919 (2001).

    Article  ADS  Google Scholar 

  19. S. C. Trager, S. M. Faber, G. Worthey, and J. J. Gonzàlez, Astron. J. 119, 1645 (2000).

    Article  ADS  Google Scholar 

  20. T. Wiklind, F. Combes, and C. Henkel, Astron. Astrophys. 297, 643 (1995).

    ADS  Google Scholar 

  21. L.M. Young, Astrophys. J. 634, 258 (2005).

    Article  ADS  Google Scholar 

  22. O. K. Sil’chenko, Pis’ma Astron. Zh. 31, 250 (2005) [Astron. Lett. 31, 227 (2005)].

    Google Scholar 

  23. O. K. Sil’chenko and A. V. Moiseev, Astron. J. 131, 1336 (2006).

    Article  ADS  Google Scholar 

  24. D. Friedli and W. Benz, Astron. Astrophys. 268, 65 (1993).

    ADS  Google Scholar 

  25. J. Kormendy, Astrophys. J. 257, 75 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.K. Silchenko, V.L. Afanasiev, 2008, published in Astronomicheskiĭ Zhurnal, 2008, Vol. 85, No. 11, pp. 972–985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silchenko, O.K., Afanasiev, V.L. The stellar population and evolution of galaxies of the NGC 80 group. Astron. Rep. 52, 875–887 (2008). https://doi.org/10.1134/S1063772908110024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772908110024

PACS numbers

Navigation