Skip to main content
Log in

Laser-Ultrasonic Study of Residual Stresses in Pipes Made of Austenitic Steel

  • PHYSICAL FOUNDATIONS OF TECHNICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The paper discusses an acoustoelastic study of residual stresses and related structural changes in thin-walled austenitic steel pipes. A probing ultrasonic (US) beam is formed owing to the thermoelastic effect by absorption of a laser pulse in an optoacoustic transducer. Normal and oblique incidence (at an angle close to critical) of the US beam was used on the studied. Distribution maps of US velocity variations over the object’s surface and the volume structural inhomogeneities inside the metal were plotted. Estimates are presented for the residual stresses in the sample under nonstationary thermal loading. The coincidence between the residual stress distribution, structural inhomogeneities of the metal, and distribution of thermal loading sources is established. The possibility of estimating the residual life and finding of macrocrack nucleation centers is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods (Elsevier, Amsterdam, 1997).

    MATH  Google Scholar 

  2. Practical Residual Stress Measurement Methods, Ed. by G. S. Schajer (John Wiley and Sons, New York, 2013).

    Google Scholar 

  3. A. N. Guz’, F. G. Makhort, O. I. Gushcha, and V. K. Lebedev, Foundations of Ultrasound Nondestructive Method for Determining Stresses in Solids (Naukova Dumka, Kiev, 1974) [in Russian].

    Google Scholar 

  4. A. E. Puro, Acoust. Phys. 42 (1), 99 (1996).

    ADS  Google Scholar 

  5. N. E. Nikitina, Acousto-Elasticity. Experience of Practical Application (TALAM, Nizhny Novgorod, 2005) [in Russian].

    Google Scholar 

  6. A. L. Uglov, V. I. Erofeev, and A. N. Smirnov, Acoustical Testing for Equipment under Manufacturing and Operational Process (Nauka, Moscow, 2009) [in Russian].

    Google Scholar 

  7. A. A. Karabutov, V. V. Koshkin, A. S. Podol’skii, A. A. Filatov, and S. A. Khizhnyak, Kontrol. Diagn. 12, 22 (2008).

    Google Scholar 

  8. D. S. Hughes and J. L. Kelly, Phys. Rev. 92 (5), 1145 (1953).

    Article  ADS  Google Scholar 

  9. Physical Acoustics: Principles and Methods, Vol. 2, Part B: Properties of Polymers and Nonlinear Acoustics, Ed. by W. P. Mason (Academic Press, New York, 1965; Mir, Moscow, 1966).

  10. GOST (State Standard) No. R 56 664-2015: Non-Destructive Testing. Evaluation of Stress State Material Engineering Products by Acoustoelastic Methods. General Requirements (Standartinform, Moscow, 2016).

  11. A. A. Karabutov, RF Patent No. 2381496 (2008).

  12. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  13. A. Yu. Ivochkin, A. A. Karabutov, M. L. Lyamshev, I. M. Pelivanov, U. Rohatgi, and M. Subudhi, Acoust. Phys. 53, 471 (2007).

    Article  ADS  Google Scholar 

  14. A. Karabutov, A. Devichensky, A. Ivochkin, M. Lyamshev, I. Pelivanov, U. Ruhadgi, V. Solomatin, and M. Subudhi, Ultrasonics 48, 631 (2008).

    Article  Google Scholar 

  15. A. I. Korobov, M. Yu. Izosimova, and N. I. Odina, Acoust. Phys. 61, 293 (2015).

    Article  ADS  Google Scholar 

  16. A. M. Lomonosov, A. P. Mayer, and P. Hess, Exp. Methods Phys. Sci. 39, 65 (2001).

    Article  Google Scholar 

  17. A. Yu. Devichenskii, A. M. Lomonosov, S. E. Zharinov, V. G. Mikhalevich, M. L. Lyamshev, T. O. Ivanova, and N. S. Merkulova, Acoust. Phys. 55, 61 (2009).

    Article  ADS  Google Scholar 

  18. A. A. Karabutov, V. G. Shipsha, A. A. Karabutov, Jr., A. N. Zharinov, and I. A. Kudinov, RF Patent No. 2544257 (2015).

  19. A. A. Karabutov, N. B. Podymova, and V. A. Simonova, Int. J. Appl. Eng. Res. 10 (20), 41121 (2015).

    Google Scholar 

  20. A. A. Karabutov, N. B. Podymova, and E. B. Cherepetskaya, J. Appl. Mech. Tech. Phys. 58 (3), 503 (2017).

    Article  ADS  Google Scholar 

  21. A. L. Uglov, A. A. Khlybov, S. N. Pichkov, and D. N. Shishulin, Russ. J. Nondestr. Test. 52 (2), 53 (2016).

    Article  Google Scholar 

  22. A. I. Korobov, N. V. Shirgina, A. I. Kokshaiskii, and and V. M. Prokhorov, Acoust. Phys. 64 (4), 415 (2018).

    Article  ADS  Google Scholar 

  23. A. S. Bychkov, E. B. Cherepetskaya, A. A. Karabutov, and V. A. Makarov, Acoust. Phys. 64 (1), 77 (2018).

    Article  ADS  Google Scholar 

  24. V. P. Zarubin, A. S. Bychkov, A. A. Karabutov, V. A. Simonova, I. A. Kudinov, and E. B. Cherepetskaya, Moscow Univ. Phys. Bull. 73 (1), 75 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed at the International Laser Center of Moscow State University and supported by the National University of Science and Technology (MISIS) using facilities provided by ILIT RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Mironova.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zharinov, A.N., Karabutov, A.A., Mironova, E.A. et al. Laser-Ultrasonic Study of Residual Stresses in Pipes Made of Austenitic Steel. Acoust. Phys. 65, 307–315 (2019). https://doi.org/10.1134/S1063771019030114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771019030114

Keywords:

Navigation