Skip to main content
Log in

Wave field localization in a prestressed functionally graded layer

  • Classical Problems of Linear Acoustics and Wave Theory
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Characteristic features of wave field formation caused by a surface source of harmonic vibration in a prestressed functionally graded layer are investigated. It is assumed that the elastic moduli and the density of the material vary with depth according to arbitrary laws. The initial material of the medium is represented by a model hyperelastic material with third-order elastic moduli. The boundary-value problem for a set of Lamè equations is reduced to a set of Cauchy problems with initial conditions, which is solved by the Runge–Kutta–Merson method modified to fit the specific problem under study. Considering shear vibrations of a functionally graded layer as an example, effects of the type of its inhomogeneity, variations in its properties, and nature of its initial stressed state on the displacement distribution in depth are investigated. Special attention is paid to characteristic features of displacement localization in a layer with an interface-type inclusion near critical frequencies. A direct relation between the inhomogeneous layer structure and the type of displacement localization in depth is demonstrated. It is found that the role of initial stresses and variations in material parameters considerably increases in the vicinities of critical frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Aichi, Proc. Phys.–Math. Soc. Japan, 4 (4–5), 137–142 (1922).

    Google Scholar 

  2. R. Stoneley, Mon. Not. Roy. Astron. Soc. Geophys. Suppl., 3, 222–232 (1934).

    Article  ADS  Google Scholar 

  3. J. N. Willson, Bull. Seism. Soc. Am., 32 (4), 297–304 (1942).

    Google Scholar 

  4. J. Sato, Bull. Seism. Soc. Am. 49 (4), 57–77 (1959).

    Google Scholar 

  5. T. K. De, Pageophys., 70, 18–21 (1968).

    Article  Google Scholar 

  6. M. M. Machevariani, V. V. Tyutekin, and A. P. Shkvarnikov, Akust. Zh., 17 (1), 97–102 (1971).

    Google Scholar 

  7. S. N. Bhattacharya, Pageophys., 93 (3), 19–35 (1972).

    Article  Google Scholar 

  8. I. V. Anan’ev and V. A. Babeshko, Mekhn. Tv. Tela, No. 1, 64–69 (1978).

    Google Scholar 

  9. I. V. Anan’ev, V. V. Kalinchuk, and I. B. Polyakova, J. Appl. Mat. Mech., 47 (3), 408–413 (1983).

    Article  Google Scholar 

  10. V. A. Babeshko, E. V. Glushkov, and Zh. F. Zinchenko, Dynamics of Heterogeneous Linearly Elastic Media, (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  11. S. A. Skobel’tsyn and L. A. Tolokonnikov, Akust. Zh., 36 (4), 740–744 (1990).

    Google Scholar 

  12. V. V. Kalinchuk and T. I. Belyankova, Dynamic Contact Problems for Preliminary Stressed Solids, (Fizmatlit, Moscow, 2002) [in Russian].

    MATH  Google Scholar 

  13. B. Collet, M. Destrade, and G. A. Maugin, Eur. J. Mechanics–A/Solids 25 (5), 695–706 (2006).

    Article  ADS  Google Scholar 

  14. O. Matsuda and C. Glorieux, J. Acoust. Soc. Am. 121 (6), 3437–3445 (2007).

    Article  ADS  Google Scholar 

  15. E. V. Glushkov, N. V. Glushkova, S. I. Fomenko, and Ch. Zhang, Acoust. Phys. 58 (3), 339–353 (2012).

    Article  ADS  Google Scholar 

  16. V. V. Kalinchuk and T. I. Belyankova, Izv. VUZov. Sev.–Kav. Region. Estest. Nauki, Special Number, 46–49 (2004).

    Google Scholar 

  17. V. V. Kalinchuk, T. I. Belyankova, and A. S. Bogomolov, Ekolog. Vestnik Nauchnykh Tsentrov Chernomor. Ekonom. Sotrudn., No. 2, 26–32 (2006).

    Google Scholar 

  18. V. V. Kalinchuk and T. I. Belyankova, Dynamics of Heterogeneous Media Surface, (Fizmatlit, Moscow, 2009) [in Russian].

    MATH  Google Scholar 

  19. O. V. Rudenko, Phys.–Usp. 49 (1), 69–87 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  20. F. D. Murnaghan, Am. J. Math., 59 (2), 235–260 (1937).

    Article  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Theory of Elasticity. The Course of Theoretical Physics. Vol. 7. (Pergamon Press, 1986; Nauka, Moscow, 1987).

    Google Scholar 

  22. R. A. Toupin and B. Bernstein, J. Acoust. Soc. Am., 33, 216–225 (1961).

    Article  ADS  Google Scholar 

  23. A. I. Lur’e, Nonlinear Theory of Elasticity, (Nauka, Moscow, 1980) [in Russian].

    MATH  Google Scholar 

  24. A. N. Guz’, Elastic Waves in Solids eith the Initial Stresses, (Naukova Dumka, Kiev, 1986), Vol. 2 [in Russian].

    Google Scholar 

  25. D. S. Hughes and J. L. Kelly, Phys. Rev. 92 (5), 1145–1149 (1953).

    Article  ADS  Google Scholar 

  26. V. N. Bakulin and A. G. Protosenya, Trans. (Dokl.) USSR Acad. Sci. Earth Sci., 263, 314–316 (1981).

    Google Scholar 

  27. S. S. Sekoyan, Akust. Zh., 16 (3), 453–457 (1970).

    Google Scholar 

  28. D. E. Eastman, J. Appl. Phys. 37 (6), 2312–2316 (1966).

    Article  ADS  Google Scholar 

  29. A. D. Volkov, A. I. Kokshaiskii, A. I. Korobov, and V. M. Prokhorov, Acoust. Phys. 61 (6), 651–656 (2015).

    Article  ADS  Google Scholar 

  30. V. I. Erofeev, V. A. Zaznobin, and R. V. Samokhvalov, Acoust. Phys. 53 (5), 546–552 (2007).

    Article  ADS  Google Scholar 

  31. N. E. Nikitina, A. V. Kamyshev, and S. V. Kazachek, Russ. J. Nondestruct. Testing, 51 (3), 171–178 (2015).

    Article  Google Scholar 

  32. A. L. Uglov, V. I. Erofeev, and A. N. Smirnov, (Nauka, Moscow, 2009) [in Russian].

  33. N. E. Nikitina, Acoustoelasticity. Experience of Practical Application, (TALAM, Novgorod, 2005) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kalinchuk.

Additional information

Original Russian Text © T.I. Belyankova, V.V. Kalinchuk, 2017, published in Akusticheskii Zhurnal, 2017, Vol. 63, No. 3, pp. 219–234.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyankova, T.I., Kalinchuk, V.V. Wave field localization in a prestressed functionally graded layer. Acoust. Phys. 63, 245–259 (2017). https://doi.org/10.1134/S1063771017030046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771017030046

Keywords

Navigation