Skip to main content
Log in

Sound waves in a liquid with polydisperse vapor–gas bubbles

  • Physical Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A mathematical model is presented for the propagation of plane, spherical, and cylindrical sound waves in a liquid containing polydisperse vapor–gas bubbles with allowance for phase transitions. A system of integro-differential equations is constructed to describe perturbed motion of a two-phase mixture, and a dispersion relation is derived. An expression for equilibrium sound velocity is obtained for a gas–liquid or vapor–liquid mixture. The theoretical results agree well with the known experimental data. The dispersion curves obtained for the phase velocity and the attenuation coefficient in a mixture of water with vapor–gas bubbles are compared for various values of vapor concentration in the bubbles and various bubble distributions in size. The evolution of pressure pulses of plane and cylindrical waves is demonstrated for different values of the initial vapor concentration in bubbles. The calculated frequency dependence of the phase sound velocity in a mixture of water with vapor bubbles is compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. I. Nigmatulin, Dynamics of Multiphase Systems (Nauka, Moscow, 1987), Part 1.

    Google Scholar 

  2. V. E. Nakoryakov, B. G. Pokusaev, and I. R. Shreiber, Wave Mechanics of Gasand Vapor—Liquid Media (Energoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  3. A. A. Gubaidullin, A. I. Ivandaev, R. I. Nigmatulin, and N. S. Khabeev, in Resume of Science and Technics. Mechanics of Liquid and Gas (VINITI, Moscow, 1982), Vol. 17, pp. 160–249.

    Google Scholar 

  4. A. Yu. Varaksin, High Temp. 51, 377 (2013).

    Article  Google Scholar 

  5. V. Sh. Shagapov, Prikl. Mekhan. Tekhn. Fiz. 18, 90 (1977).

    Google Scholar 

  6. K. W. Commander and A. Prosperetti, J. Acoust. Soc. Am. 85, 732 (1989).

    Article  ADS  Google Scholar 

  7. V. N. Alekseev and S. A. Rybak, Acoust. Phys. 43, 633 (1997).

    ADS  Google Scholar 

  8. V. N. Alekseev and S. A. Rybak, Acoust. Phys. 45, 535 (1999).

    ADS  Google Scholar 

  9. D. A. Gubaidullin and Yu. V. Fedorov, J. Appl. Mat. Mech. 77, 532 (2013).

    Article  MathSciNet  Google Scholar 

  10. P. S. Wilson, R. A. Roy, and W. M. Carey, J. Acoust. Soc. Am. 117, 1895 (2005).

    Article  ADS  Google Scholar 

  11. V. Leroy, A. Strybulevych, J. H. Page, and M. G. Scanlon, J. Acoust. Soc. Am. 123, 1931 (2008).

    Article  ADS  Google Scholar 

  12. V. Duro, D. R. Rajaona, D. Decultot, and G. Maze, IEEE J. Oceanic Eng. 36, 114 (2011).

    Article  Google Scholar 

  13. R. I. Nigmatulin, D. A. Gubaidullin, and Yu. V. Fedorov, Dokl. Phys. 58, 261 (2013). DOI: 10.1134/S1028335813060128

    Article  ADS  Google Scholar 

  14. D. A. Gubaidullin, D. D. Gubaidullina, and Yu. V. Fedorov, Fluid Dynamics, 48, 781 (2013).

    Article  Google Scholar 

  15. V. E. Nakoryakov, B. G. Pokusaev, N. A. Pribaturin, and I. R. Shreiber, Akust. Zh. 30, 808 (1984).

    Google Scholar 

  16. D. S. Drumheller and A. Bedford, J. Acoust. Soc. Am. 67, 186 (1980).

    Article  ADS  Google Scholar 

  17. K. H. Ardron and R. B. Duffey, Int. J. Multiphase Flow 4, 303 (1978).

    Article  Google Scholar 

  18. B. G. Pokusaev, E. A. Tairov, and S. A. Vasil’ev, Acoust. Phys. 56, 306 (2010).

    Article  ADS  Google Scholar 

  19. B. G. Pokusaev, E. A. Tairov, A. S. Safarov, and D. A. Nekrasov, Therm. Sci. 18, 591 (2014).

    Article  Google Scholar 

  20. L. D. Landau and E. M. Lifshitch, Fluid Mechanics. Vol. 6 of Theor. Phys. Course (Butterworth-Heinemann, 1987, 2nd ed.; Nauka, Moscow, 1988).

    Google Scholar 

  21. A. Sh. Azamatov and V. Sh. Shagapov, Akust. Zh. 27, 161 (1981).

    ADS  Google Scholar 

  22. D. A. Gubaidullin and A. A. Nikiforov, High Temper. 48, 170 (2010).

    Article  Google Scholar 

  23. V. A. Grigor’ev, A. A. Lun’kov, and V. G. Petnikov, Acoust. Phys. 61, 85 (2015).

    Article  ADS  Google Scholar 

  24. V. Sh. Shagapov and V. V. Sarapulova, Acoust. Phys. 61, 37 (2015).

    Article  ADS  Google Scholar 

  25. V. A. Gusev and O. V. Rudenko, Acoust. Phys. 61, 152 (2015).

    Article  ADS  Google Scholar 

  26. R. I. Nigmatulin, N. S. Khabeev, and F. B. Nagiev, Int. J. Heat Mass Transfer 24, 1033 (1981).

    Article  Google Scholar 

  27. N. S. Khabeev, Int. J. Heat Mass Transfer 50, 4323 (2007).

    Article  Google Scholar 

  28. V. Sh. Shagapov, I. K. Gimaltdinov, N. S. Khabeev, and S. S. Bailey, Shock Waves 13, 49 (2003).

    Article  ADS  Google Scholar 

  29. V. A. Krasil’nikov, Introduction into Acoustics. A Tutorial (MGU, Moscow, 1992) [in Russian].

    Google Scholar 

  30. D. A. Gubaidullin, Dynamics of Two-Phase Vapor-GasDrop Media (Kazan. Matem. Obshch., Kazan, 1998) [in Russian].

    Google Scholar 

  31. C. L. Feldman, S. E. Nydick, and R. P. Kokernak, Prog. Heat Mass Transfer 6, 671 (1972).

    Google Scholar 

  32. H. B. Karplus, The Velocity of Sound in Liquids Containing Gas Bubbles Res. Develop./Report ARF-4132. Atomic Energy Comm.

  33. W. Kuczynski, Int. J. of Heat Fluid Flow 40, 135 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Gubaidullin.

Additional information

Original Russian Text © D.A. Gubaidullin, Yu.V. Fedorov, 2016, published in Akusticheskii Zhurnal, 2016, Vol. 62, No. 2, pp. 178–186.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubaidullin, D.A., Fedorov, Y.V. Sound waves in a liquid with polydisperse vapor–gas bubbles. Acoust. Phys. 62, 179–186 (2016). https://doi.org/10.1134/S1063771016020068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771016020068

Keywords

Navigation