Skip to main content
Log in

Strongly focusing multielement therapeutic emitters for noninvasive ultrasonic ablation of adipose tissue

  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

For ultrasonic ablation of adipose tissue it is necessary to dynamically focus high intensity acoustic energy in a depth interval of 5–40 mm from the skin surface. One of the methods for achieving this goal is the use of powerful spherical emitters having large aperture angles, which are built as multielement phased arrays. For description of acoustic fields emitted by such transducers a nonlinear model is developed; the model has a larger area of applicability with respect to the aperture angle, as compared to known approaches. A method for manufacturing the phased array using a single spherical piezo element produced from a proprietary non-composite piezo ceramics developed at UltraShape Ltd. is proposed. The method is based on the segmentation of one of the electrodes of the piezo element into N randomly distributed circular elements. The proto-type array was manufactured, and the level of cross-talking between neighboring elements has been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Haar, Progr. Bioph. Mol. Biol. 93, 111 (2007).

    Article  Google Scholar 

  2. Z. Xu, A. Ludomirsky, L. Y. Eun, T. L. Hall, B. C. Tran, J. B. Fowlkes, and C. A. Cain, IEEE Trans. Ultrason. Ferroelec. Freq. Control 51, 726 (2004).

    Article  Google Scholar 

  3. S. A. Teitelbaum, J. L. Burns, J. Kubota, M. J. Otto, J. Shirakaba, Y. Suzuki, S. A. Brown, Plastic Reconstruct. Surg. 120, 779 (2007).

    Article  Google Scholar 

  4. J. Moreno-Morago, T. Valero-Altes, A. M. Riquelme, and M. I. Issaria-Marcosy, Lasers Surg. Med. 39, 315 (2007).

    Article  Google Scholar 

  5. C. A. Cain and S. A. Umemura, IEEE Trans. Microwave Theory Tech. 34, 542 (1986).

    Article  Google Scholar 

  6. J. P. Do-Huu and P. Harteman, in Proc. IEEE Ultrason. Symp., p. 705 (1981).

  7. D. R. Daum and K. Hynynen, IEEE Trans. Ultrason. Ferroelec. Freq. Control 46, 1254 (1999).

    Article  Google Scholar 

  8. M. Z. Lu, M. X. Wan, F. Xu, X. D. Wang, and H. Zhong, IEEE Trans. Ultrason. Ferroelec. Freq. Control 52, 1270 (2005).

    Article  Google Scholar 

  9. S. Goss, L. Frizzel, J. T. Kouzmanoff, J. M. Barich, and J. M. Yang, IEEE Trans. Ultrason. Ferroelec. Freq. Control 43, 1111 (1996).

    Article  Google Scholar 

  10. V. P. Kuznetsov, Akust. Zh. 16, 548 (1970) [Sov. Phys. Acoust. 16, 467 (1970)].

    Google Scholar 

  11. N. S. Bakhvalov, Ya. M. Zhilekin, and E. A. Zabolotskaya, Nonlinear Theory of Sonic Beams (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  12. Y. S. Lee and M. F. Hamilton, J. Acoust. Soc. Am. 97, 906 (1995).

    Article  ADS  Google Scholar 

  13. E. A. Filonenko and V. A. Khokhlova, Akust. Zh. 47, 541 (2001) [Acoust. Phys. 47, 468 (2001)].

    Google Scholar 

  14. J. N. Tjotta and S. Tjotta, J. Acoust. Soc. Am. 69, 1644 (1981).

    Article  MATH  ADS  Google Scholar 

  15. J. Tavakkoli, D. Cathignol, R. Souchon, and O. A. Sapozhnikov, J. Acoust. Soc. Am. 104, 2061 (1998).

    Article  ADS  Google Scholar 

  16. P. Christopher and K. Parker, J. Acoust. Soc. Am. 90, 488 (1991).

    Article  ADS  Google Scholar 

  17. T. Kamakura, T. Ishiwata, and K. Matsuda, J. Acoust. Soc. Am. 107, 3035 (2000).

    Article  ADS  Google Scholar 

  18. J. Wojcik, A. Nowicki, P. A. Lewin, P. E. Bloomfield, T. Kujawska, and L. Filipczynski, Ultrasonics 44, 310 (2006).

    Article  Google Scholar 

  19. O. A. Sapozhnikov and Yu. A. Pishchal’nikov, Acoust. Phys. 49, 354 (2003).

    Article  ADS  Google Scholar 

  20. H. T. O’Neil, J. Acoust. Soc. Am. 21, 516 (1949).

    Article  ADS  Google Scholar 

  21. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN 77 (Cambridge Univ., New York, 1992).

    Google Scholar 

  22. L. R. Gavrilov and J. W. Hand, IEEE Trans. Ultrason. Ferroelec. Freq. Control 47, 125 (2000).

    Article  Google Scholar 

  23. A. D. Pierce, Acoustics (Acoust. Soc. Am., Woodbury, 1989).

    Google Scholar 

  24. P. R. Stephanishen and K. C. Benjamin, J. Acoust. Soc. Am. 71, 803 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Kushkuley.

Additional information

Original Russian Text © V.I. Goland, L.M. Kushkuley, 2009, published in Akusticheskiĭ Zhurnal, 2009, Vol. 55, No. 4–5, pp. 481–495.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goland, V.I., Kushkuley, L.M. Strongly focusing multielement therapeutic emitters for noninvasive ultrasonic ablation of adipose tissue. Acoust. Phys. 55, 496–509 (2009). https://doi.org/10.1134/S106377100904006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377100904006X

PACS numbers

Navigation