Skip to main content
Log in

Antitumor properties of nonstarch polysaccharides: Fucoidans and chitosans

  • Pharmacology
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

This review deals with the pharmacology of nonstarch polysaccharides, namely fucoidans and chitosans, isolated from marine organisms. The work summarizes information from the international literature on the antitumor activities of native polysaccharides and their derivatives. The structures and physicochemical properties of these polysaccharides are described and the molecular mechanisms of their antitumor and antimetastatic effects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adrianov, A.V., Current Problems in Marine Biodiversity Studies, Biol. Morya, 2004, vol. 30, no. 1, pp. 3–19 [Russ. J. Mar. Biol., 2004, vol. 30, no. 1, pp. S1–S16].

    Google Scholar 

  2. Alekseenko, T.V., Zhanaeva, S.Ya., Venediktova, A.A. et al., Protivoopukholevaya i antimetastaticheskaya aktivnost’ sulfatirovannogo polisakharida fukoidana, vydelennogo iz buroi vodorosli Okhotskogo morya Fucus evanescens (Antitumor and Antimetastatic Activity of the Sulfated Polysaccharide Fucoidan Extracted from the Brown Seaweed Fucus evanescens from the Sea of Okhotsk), Byull. Eksperim. Biol. i Med., 2007, vol. 143, no. 6, pp. 675–677.

    Google Scholar 

  3. Vischuk, O.S., Yermakova, S.P., Fam Dyuk Tin et al., Protivoopukholevaya aktivnost’ fukoidanov iz burykh vodoroslei (Antitumor Activity of Fucoidans from Brown Algae), Tikhookean. Med. Zhurnal, 2009, no. 3, pp. 92–95.

  4. Zueva, Ye.P., Razina, T.G., Amosova, Ye.N. et al., Vliyanie khitozana s razlichnoi molekulyarnoi massoi na razvitie adenokartsinomy Erlikha i effektivnost’ tsiklofosfana u myshei (Effect of Chitosans with Different Molecular Weights on the Progress of Ehrlich’s Adenocarcinoma and Cyclophosphan Efficacy in Mice), Tikhookean. Med. Zhurnal, 2010, no. 2, pp. 82–84.

  5. Queiroz, K.C., Assis, C.F., Medeiros, V.P., et al., Cytotoxicity Effect of Algal Polysaccharides on HL60 Cells, Biokhimiya, 2006, vol. 71, no. 12, pp. 1613–1617 [Biochemistry, 2006, vol. 71, no. 12, pp. 1312–1315].

    Google Scholar 

  6. Razina, T.G., Zueva, Ye.P., Amosova, Ye.N. et al., Vliyaniye fukoidana iz morskoi buroi vodorosli Laminaria japonica na razvitie adenokartsinomy Erlikha i kartsinomy legkikh L’yuis i effektivnost’ tsiklofosfana u myshei (Effect of Fucoidan from the Marine Brown Alga Laminaria japonica on the Progress of Ehrlich’s Adenocarcinoma and Lewis Lung Carcinoma and on Cyclophosphan Efficacy in Mice), Tikhookean. Med. Zhurnal, 2010, no. 2, pp. 36–39.

  7. Stonik, V.A., Tolstikov, G.A., Prirodnye soedineniya i sozdanie otechestvennykh lekarstvennykh preparatov (Natural Compounds and Development of New Drugs in Russia), Vestnik DVO RAN, 2008, vol. 78, no. 8, pp. 675–687.

    Google Scholar 

  8. Khotimchenko, Yu.S., Yermak, I.M., Bednyak, A.Ye. et al., Farmakologiya nekrakhmalnykh polisakharidov (Pharmacology of Nonstarch Polysaccharides), Vestnik DVO RAN, 2005, no. 1, pp. 72–82.

  9. Aisa, Y., Miyakawa, Y., Nakazato, T. et al., Fucoidan Induces Apoptosis of Human HS-sultan Cells Accompanied by Activation of Caspase-3 and Down-regulation of ERK Pathways, Am. J. Hematol., 2005, vol. 78, pp. 7–14.

    Article  CAS  PubMed  Google Scholar 

  10. Asp, N.-G.L., Classification and Methodology of Food Carbohydrates as Related to Nutritional Effects, Am. J. Clin. Nutr., 1995, vol. 61, pp. S930–S937.

    Google Scholar 

  11. Brunner, G., Reimbold, K., Meissauer, A. et al., Sulfated Glycosaminoglycans Enhance Tumor Cell Invasion in vitro by Stimulating Plasminogen Activation, Exp. Cell Res., 1998, vol. 239, pp. 301–310.

    Article  CAS  PubMed  Google Scholar 

  12. Burkitt, D.P., Epidemiology of Cancer of the Colon and Rectum, Cancer, 1971, vol. 28, pp. 3–13.

    Article  CAS  PubMed  Google Scholar 

  13. Carreno-Gomez, B., Duncan, R., Evaluation of the Biological Properties of Soluble Chitosan and Chitosan Microspheres, Int. J. Pharm., 1997, vol. 148, pp. 231–240.

    Article  CAS  Google Scholar 

  14. Choi, E.M., Kim, A.J., Kim, Y.O., Hwang, J.K., Immunomodulating Activity of Arabinogalactan and Fucoidan in vitro, J. Med. Food., 2005, vol. 8, pp. 446–453.

    Article  CAS  PubMed  Google Scholar 

  15. Collén, P.N., Lemoine, M., Daniellou, R. et al., Enzymatic Degradation of κ-Carrageenan in Aqueous Solution, Biomacromolecules, 2009, vol. 10, pp. 1757–1767.

    Article  Google Scholar 

  16. Coombe, D.R., Parish, C.R., Ramshaw, I.A., Snowden, J.M., Analysis of the Inhibition of Tumour Metastasis by Sulphated Polysaccharides, Int. J. Cancer, 1987, vol. 39, pp. 82–88.

    Article  CAS  PubMed  Google Scholar 

  17. Cumashi, A., Ushakova, N.A., Preobrazhenskaya, M.E. et al., A Comparative Study of the Anti-inflammatory, Anticoagulant, Antiangiogenic, and Antiadhesive Activities of Nine Different Fucoidans from Brown Seaweeds, Glycobiology, 2007, vol. 17, pp. 541–552.

    Article  CAS  PubMed  Google Scholar 

  18. d’Ayala, G.G., Malinconico, M., Laurienzo, P., Marine Derived Polysaccharides for Biomedical Applications: Chemical Modification Approaches, Molecules, 2008, vol. 13, pp. 2069–2106.

    Article  PubMed  Google Scholar 

  19. Do, H., Pyo, S., Sohn, E.H., Suppression of iNOS Expression by Fucoidan Is Mediated by Regulation of p38 MAPK, JAK/STAT, AP-1 and IRF-1, and Depends on Up-regulation of Scavenger Receptor B1 Expression in TNF-α- and IFN-γ-Stimulated C6 Glioma Cells, J. Nutr. Biochem., 2010, vol. 21,issue 8, pp. 671–679].

    Article  CAS  PubMed  Google Scholar 

  20. Duarte, M., Cardoso, M., Noseda, M., Structural Studies on Fucoidans from the Brown Seaweed Sargassum stenophyllum, Carbohydr. Res., 2001, vol. 333, pp. 281–293.

    Article  CAS  PubMed  Google Scholar 

  21. Ellouali, M., Boisson-Vidal, C., Durand, P., Jozefonvicz, J., Antitumor Activity of Low Molecular Weight Fucans Extracted from Brown Seaweed Ascophyllum nodosum, Anticancer Res., 1993, vol. 13, pp. 2011–2019.

    CAS  PubMed  Google Scholar 

  22. Haneji, K., Matsuda, T., Tomita, M. et al., Fucoidan Extracted from Cladosiphon okamuranus Tokida Induces Apoptosis of Human T-Cell Leukemia Virus Type 1-Infected T-Cell Lines and Primary Adult T-Cell Leukemia Cells, Nutr. Cancer, 2005, vol. 52, pp. 189–201.

    Article  CAS  PubMed  Google Scholar 

  23. Harish Prashanth, K.V., Tharanathan, R.N., Depolymerized Products of Chitosan as Potent Inhibitors of Tumor-Induced Angiogenesis, Biochim. Biophys. Acta, 2005, vol. 1722, pp. 22–29.

    CAS  PubMed  Google Scholar 

  24. Haroun-Bouhedja, F., Ellouali, M., Sinquin, C., Boisson-Vidal, C., Relationship between Sulfate Groups and Biological Activities of Fucans, Thromb Res., 2000, vol. 100, pp. 453–459.

    Article  CAS  PubMed  Google Scholar 

  25. Haroun-Bouhedja, F., Lindenmeyer, F., Lu, H. et al., In vitro Effects of Fucans on MDA-MB231 Tumor Cell Adhesion and Invasion, Anticancer Res., 2002, vol. 22, pp. 2285–2292.

    CAS  PubMed  Google Scholar 

  26. Huang, R., Mendis, E., Rajapakse, N., Kim, S.K., Strong Electronic Charge as an Important Factor for Anticancer Activity of Chitooligosaccharides (COS), Life Sci., 2006, vol. 78, pp. 2399–2408.

    Article  CAS  PubMed  Google Scholar 

  27. Hyun, J.-H., Kim, S.-C., Kang, J.-I. et al., Apoptosis Inducing Activity of Fucoidan in NCT-15 Colon Carcinoma Cells, Biol. Pharm. Bull., 2009, vol. 32, pp. 1760–1764.

    Article  CAS  PubMed  Google Scholar 

  28. Itoh, H., Noda, H., Amano, H. et al., Antitumor Activity and Immunological Properties of Marine Algal Polysaccharides, Especially Fucoidan, Prepared from Sargassum thunbergii of Phaeophyceae, Anticancer Res., 1993, vol. 13, pp. 2045–2052.

    CAS  PubMed  Google Scholar 

  29. Itoh, H., Noda, H., Amano, H., Ito, H., Immunological Analysis of Lung Metastasis by Fucoidan (GIV-A) Prepared from Brown Seaweed Sargassum thunbergii, Anticancer Res., 1995, vol. 15, pp. 1937–1947.

    CAS  PubMed  Google Scholar 

  30. Kawabe, M., Futakuchi, M., Tamano, S. et al., Modifying Effects of Chitin, Chitosan and Their Related Compounds on 2-Amino-3,8-Dimethylimidazo[4,5-f]quinoxaline (MeIQx) in a Rat Medium-Term Hepatocarcinogenesis Model, and Their Post-initiation Effects in a Female Rat 2-Stage Multi-organ Carcinogenesis Model, Food Chem. Toxicol., 2008, vol. 46, pp. 2758–2763.

    Article  CAS  PubMed  Google Scholar 

  31. Kijjoa, A., Sawangwong, P., Drugs and Cosmetics from the Sea, Mar. Drugs, 2004, vol. 2, pp. 73–82.

    Article  CAS  Google Scholar 

  32. Kim, M.M., Kim, S.K., Chitooligosaccharides Inhibit Activation and Expression of Matrix Metalloproteinase-2 in Human Dermal Fibroblasts, FEBS Lett., 2006, vol. 580, pp. 2661–2666.

    Article  CAS  PubMed  Google Scholar 

  33. Kimura, Y., Okuda, H., Prevention by Chitosan of Myelotoxicity, Gastrointestinal Toxicity and Immunocompetent Organic Toxicity Induced by 5-Flurouracil without Loss of Antitumor Activity in Mice, Jpn. J. Cancer Res., 1999, vol. 90, pp. 765–774.

    CAS  PubMed  Google Scholar 

  34. Kobayashi, M., Watanabe, T., Suzuki, S., Suzuki, M., Effect of N-Acetylchitohexaose against Candida albicans Infection of Tumor-Bearing Mice, Microbiol. Immunol., 1990, vol. 34, pp. 413–426.

    CAS  PubMed  Google Scholar 

  35. Koyanagi, S., Tanigawa, N., Nakagawa, H. et al., Oversulfation of Fucoidan Enhances Its Anti-angiogenic and Antitumor Activities, Biochem. Pharmacol., 2003, vol. 65, pp. 173–179.

    Article  CAS  PubMed  Google Scholar 

  36. Lee, J.K., Lim, H.S., Kim, J.H., Cytotoxic Activity of Aminoderivatized Cationic Chitosan Derivatives, Bioorg. Med. Chem. Lett., 2002, vol. 12, pp. 2949–2951.

    Article  CAS  PubMed  Google Scholar 

  37. Lee, N.Y., Ermakova, S.P., Zvyagintseva, T.N. et al., Inhibitory Effects of Fucoidan on Activation of Epidermal Growth Factor Receptor and Cell Transformation in JB6 Cl41 Cells, Food Chem. Toxicol., 2008a, vol. 46, pp. 1793–1800.

    Article  CAS  PubMed  Google Scholar 

  38. Lee, N.Y., Ermakova, S.P., Choi, H.K. et al., Fucoidan from Laminaria cichorioides Inhibits AP-1 Transactivation and Cell Transformation in the Mouse Epidermal JB6 Cells, Mol. Carcinog., 2008b, vol. 47, pp. 629–637.

    Article  CAS  PubMed  Google Scholar 

  39. Li, B., Lu, F., Wei, X., Zhao, R., Fucoidan: Structure and Bioactivity, Molecules, 2008, vol. 13, pp. 1671–1695.

    Article  CAS  PubMed  Google Scholar 

  40. Li-Feng, Q., Zi-Rong, X., Yan, L. et al., In vitro Effects of Chitosan Nanoparticles on Proliferation of Human Gastric Carcinoma Cell Line MGC803 Cells, World J. Gastroenterol., 2005, vol. 11, pp. 5136–5141.

    Google Scholar 

  41. Lin, S.Y., Chan, H.Y., Shen, F.H. et al., Chitosan Prevents the Development of AOM-Induced Aberrant Crypt Foci in Mice and Suppressed the Proliferation of AGS Cells by Inhibiting DNA Synthesis, J. Cell Biochem., 2007, vol. 100, pp. 1573–1580.

    Article  CAS  PubMed  Google Scholar 

  42. Liu, J.M., Bignon, J., Haroun-Bouhedja, F. et al., Inhibitory Effect of Fucoidan on the Adhesion of Adenocarcinoma Cells to Fibronectin, Anticancer Res., 2005, vol. 25, pp. 2129–2133.

    CAS  PubMed  Google Scholar 

  43. Liu, J.M., Haroun-Bouhedja, F., Boisson-Vidal, C., Analysis of the in vitro Inhibition of Mammary Adenocarcinoma Cell Adhesion by Sulphated Polysaccharides, Anticancer Res., 2000, vol. 20, pp. 3265–3271.

    CAS  PubMed  Google Scholar 

  44. Maeda, Y., Kimura, Y., Antitumor Effects of Various Low-Molecular-Weight Chitosans Are due to Increased Natural Killer Activity of Intestinal Intraepithelial Lymphocytes in Sarcoma 180-Bearing Mice, J. Nutr., 2004, vol. 134, pp. 945–950.

    CAS  PubMed  Google Scholar 

  45. Maruyama, H., Tamauchi, H., Hashimoto, M., Nakano, T., Antitumor Activity and Immune Response of Mekabu Fucoidan Extracted from Sporophyll of Undaria pinnatifida, In Vivo, 2003, vol. 17, pp. 245–249.

    CAS  PubMed  Google Scholar 

  46. Maruyama, H., Tamauchi, H., Iizuka, M., Nakano, T., The Role of NK Cells in Antitumor Activity of Dietary Fucoidan from Undaria pinnatifida Sporophylls (Mekabu), Planta Med., 2006, vol. 72, pp. 1415–1417.

    Article  CAS  PubMed  Google Scholar 

  47. Nagamine, T., Hayakawa, K., Kusakabe, T. et al., Inhibitory Effect of Fucoidan on Huh7 Hepatoma Cells through Downregulation of CXCL12, Nutr. Cancer, 2009, vol. 61, pp. 340–347.

    Article  CAS  PubMed  Google Scholar 

  48. Nam, K.-S., Kim, M.-K., Shon, Y.-H., Chemopreventive Effect of Chitosan Oligosaccharide against Colon Carcinogenesis, J. Microbiol. Biotechnol., 2007, vol. 17, pp. 1546–1549.

    CAS  PubMed  Google Scholar 

  49. Nam, K.-S., Shon, Y.-H., Suppression of Metastasis of Human Breast Cancer Cells by Chitosan Oligosaccharide, J. Microbiol. Biotechnol., 2009, vol. 19, pp. 629–633.

    Article  CAS  PubMed  Google Scholar 

  50. Nishimura, K., Nishimura, S., Nishi, N. et al., Immunological Activity of Chitin and Its Derivates, Vaccine, 1984, vol. 2, pp. 93–99.

    Article  CAS  PubMed  Google Scholar 

  51. Nishino, T., Nishioka, C., Ura, H., Isolation and Partial Characterization of a Novel Amino Sugar-Containing Fucan Sulfate from Commercial Fucus vesiculosus Fucoidan, Carbohydr. Res., 1994, vol. 255, pp. 224–231.

    Article  Google Scholar 

  52. Pilchenkov, A., Zavelevich, M., Imbs, T. et al., Sensitization of Human Malignant Lymphoid Cells to Etoposide by Fucoidan, a Brown Seaweed Polysaccharide, Exp. Oncol., 2007, vol. 29, pp. 181–185.

    Google Scholar 

  53. Pomin, V.H., Mouräo, P.A.S., Structure, Biology, Evolution, and Medical Importance of Sulfated Fucans and Galactans, Glycobiology, 2008, vol. 18, pp. 1016–1027.

    Article  CAS  PubMed  Google Scholar 

  54. Qin, C.Q., Du, Y.M., Xiao, L. et al., Enzymic Preparations of Water-Soluble Chitosan and Their Antitumor Activity, Int. J. Biol. Macromol., 2002, vol. 31, pp. 111–117.

    Article  CAS  PubMed  Google Scholar 

  55. Rajapakse, N., Kim, M.-M., Mendis, E. et al., Carboxylated Chitooligosaccharides (CCOS) Inhibit MMP-9 Expression in Human Fibrosarcoma Cells via Downregulation of AP-1, Biochim. Biophys. Acta, 2006, vol. 1760, pp. 1780–1788.

    CAS  PubMed  Google Scholar 

  56. Rao, J.S., Molecular Mechanisms of Glioma Invasiveness: the Role of Proteases, Nat. Rev. Cancer, 2003, vol. 3, pp. 489–501.

    Article  CAS  PubMed  Google Scholar 

  57. Rinaudo, M., Chitin and Chitosan: Properties and Applications, Prog. Polym. Sci., 2006, vol. 31, pp. 603–632.

    Article  CAS  Google Scholar 

  58. Riou, D., Colliec-Jouault, S., Pinczon du Sel, D. et al., Antitumor and Antiproliferative Effects of a Fucan Extracted from Ascophyllum nodosum against a Non-Small-Cell Bronchopulmonary Carcinoma Line, Anticancer Res., 1996, vol. 16, pp. 1213–1218.

    CAS  PubMed  Google Scholar 

  59. Roszkowsky, W., Beuth, J., Ko, H.L. et al., Blocking of Lectin-like Adhesion Molecules on Pulmonary Cells Inhibits Lung Sarcoma L-1 Colonization in BALB/c-Mice, Experientia, 1989, vol. 45, pp. 584–588.

    Article  Google Scholar 

  60. Saiki, I., Murata, J., Nakajima, M. et al., Inhibition by Sulfated Chitin Derivatives of Invasion through Extracellular Matrix and Enzymatic Degradation by Metastatic Melanoma Cells, Cancer Res., 1990, vol. 50, pp. 3631–3637.

    CAS  PubMed  Google Scholar 

  61. Seo, W.G., Pae, H.O., Kim, N.Y. et al., Synergistic Cooperation between Water-Soluble Chitosan Oligomers and Interferon-γ for Induction of Nitric Oxide Synthesis and Tumoricidal Activity in Murine Peritoneal Macrophages, Cancer Lett., 2000, vol. 159, pp. 189–195.

    Article  CAS  PubMed  Google Scholar 

  62. Shahidi, F., Abuzaytoun, R., Chitin, Chitosan, and Co-products: Chemistry, Production, Applications, and Health Effects, Adv. Food Nutr. Res., 2005, vol. 49, pp. 189–195.

    Google Scholar 

  63. Shen, K.-T., Chen, M.-X., Chan, H.-Y. et al., Inhibitory Effects of Chitooligosaccharides on Tumor Growth and Metastasis, Food Chem. Toxicol., 2009, vol. 47, pp. 1864–1871.

    Article  CAS  PubMed  Google Scholar 

  64. Shi, Z.Y., Guo, Y.Z., Wang, Z., Pharmacological Activity of Fucoidan from Laminaria japonica, J. Shanghai Fish. Univ., 2000, vol. 9, pp. 268–271.

    CAS  Google Scholar 

  65. Singla, A.K., Chawla, M., Chitosan: Some Pharmaceutical and Biological Aspects—an Update, J. Pharm. Pharmacol., 2001, vol. 53, pp. 1047–1067.

    Article  CAS  PubMed  Google Scholar 

  66. Soeda, S., Ishida, S., Shimeno, H., Nagamatsu, A., Inhibitory Effect of Oversulfated Fucoidan on Invasion through Reconstituted Basement Membrane by Murine Lewis Lung Carcinoma, Jpn. J. Cancer Res., 1994. vol. 85, pp. 1144–1150.

    CAS  PubMed  Google Scholar 

  67. Teas, J., The Dietary Intake of Laminaria, a Brown Seaweed, and Breast Cancer Prevention, Nutr. Cancer, 1983, vol. 4, pp. 217–222.

    Article  CAS  PubMed  Google Scholar 

  68. Torzsas, T.L., Kendall, C.W., Sugano, M. et al., The Influence of High and Low Molecular Weight Chitosan on Colonic Cell Proliferation and Aberrant Crypt Foci Development in CF1 Mice, Food Chem. Toxicol., 1996, vol. 34, pp. 73–77.

    Article  CAS  PubMed  Google Scholar 

  69. Usui, T., Isolation of Highly Purified Fucoidan from Eisenia bicyclics and Its Anticoagulant and Antitumor Activities, Agric. Biol. Chem., 1980, vol. 44, pp. 1965–1966.

    CAS  Google Scholar 

  70. Yamamoto, I., Takahashi, M., Suzuki, T. et al., Antitumor Effect of Seaweeds. IV. Enhancement of Antitumor Activity by Sulfation of a Crude Fucoidan Fraction from Sargassum kjellmanianum, Jpn. J. Exp. Med., 1984, vol. 54, pp. 143–151.

    CAS  PubMed  Google Scholar 

  71. Yamazaki-Miyamoto, Y., Yamazaki, M. et al., Fucoidan Induces Apoptosis through Activation of Caspase-8 on Human Breast Cancer MCF-7 Cells, J. Agric. Food Chem., 2009, vol. 57, pp. 8677–8682.

    Article  Google Scholar 

  72. Yang, C., Chung, D., Shin, I.S. et al., Effects of Molecular Weight and Hydrolysis Conditions on Anticancer Activity of Fucoidans from Sporophyll of Undaria pinnatifida, Int. J. Biol. Macromol., 2008, vol. 43, pp. 433–437.

    Article  CAS  PubMed  Google Scholar 

  73. Yang, Y.J., Nam, S.J., Kong, G., Kim, M.K., A Case-Control Study on Seaweed Consumption and the Risk of Breast Cancer, Brit. J. Nutr., 2009, vol. 8, pp. 1–9.

    CAS  Google Scholar 

  74. Ye, J., Li, Y., Teruya, K. et al., Enzyme-Digested Fucoidan Extracts Derived from Seaweed Mozuku of Cladosiphon novae-caledoniae Kylin Inhibit Invasion and Angiogenesis of Tumor Cells, Cytotechnology, 2005, vol. 47, pp. 117–126.

    Article  PubMed  Google Scholar 

  75. Zaharoff, D.A., Hoffman, B.S., Hooper, H.B. et al., Intravesical Immunotherapy of Superficial Bladder Cancer with Chitosan/Interleukin-12, Cancer Res., 2009, vol. 69, pp. 6192–6199.

    Article  CAS  PubMed  Google Scholar 

  76. Zhuang, C., Itoh, H., Mizuno, T., Ito, H., Antitumor Active Fucoidan from the Brown Seaweed, Umitoranoo (Sargassum thunbergii), Biosci. Biotechnol. Biochem., 1995, vol. 59, pp. 563–567.

    Article  CAS  PubMed  Google Scholar 

  77. Zvyagintseva, T.N., Shevchenko, N.M., Popivnich, I.B., A New Procedure for the Separation of Water-Soluble Polysaccharides from Brown Seaweeds, Carbohydr. Res., 1999, vol. 322, pp. 32–39.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Khotimchenko.

Additional information

Published in Russian in Biologiya Morya.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khotimchenko, Y.S. Antitumor properties of nonstarch polysaccharides: Fucoidans and chitosans. Russ J Mar Biol 36, 321–330 (2010). https://doi.org/10.1134/S1063074010050019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074010050019

Keywords

Navigation