Skip to main content
Log in

Optimal Number of Embryos for Transplantation in Obtaining Genetic-Modified Mice and Goats

  • DEVELOPMENTAL BIOLOGY OF MAMMALS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The technology of creating genetically modified animals (placental mammals) by microinjection into the pronucleus of a fertilized egg suggests, as one of the key stages, the transplantation of early embryos into female recipients. However, there is a wide range of opinions among researchers about the optimal number of embryos to be transferred to the female recipient. Thus, data on transplantation of 20–60 mouse embryos and from 2 to 6 goat embryos to one recipient are given in the methodological literature and experimental articles devoted to the method of creating genetically modified animals. Thus, the standard recommendation is the transfer of a much larger number of embryos than that which develops in animals of both species in physiological pregnancy. At the same time, technology of transplantation of bovine embryos (cattle) involves the transfer of one embryo, which is the physiological norm for this species of animals. Clinical protocols of assisted reproductive technologies for the transplantation of human embryos also recommend the transfer of one embryo, because transferring the number of embryos greater than in physiological pregnancy leads to increased risks. In our work, we analyze the results of experiments on obtaining genetically modified mice and goats and provide data indicating the need to revise the standard recommendations on the number of transferred embryos downward. We believe that the number of transferred embryos should not exceed the number of embryos characteristic for physiological pregnancy. Excess of the number of transplanted embryos leads to a pathological course of pregnancy and a significant decrease in overall performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Amiri Yekta, A., Dalman, A. Eftekhari-Yazdi, P., et al., Production of transgenic goats expressing human coagulation factor IX in the mammary glands after nuclear transfer using transfected fetal fibroblast cells, Transgenic Res., 2013, vol. 22, no. 1, pp. 131–142.

    Article  CAS  PubMed  Google Scholar 

  2. Baldassarre, H., Wang, B., Kafidi, N., et al., Production of transgenic goats by pronuclear microinjection of in vitro produced zygotes derived from oocytes recovered by laparoscopy, Theriogenology, 2003, vol. 59, nos. 3–4, pp. 831–839.

    Article  PubMed  Google Scholar 

  3. Batista, R., Melo, C., Souza-Fabjan, J., Teixeira, D., et al., Phenotypic features of first-generation transgenic goats for human granulocyte-colony stimulation factor production in milk, Biotechnol. Lett., 2014, vol. 36, no. 11, pp. 2155–2162.

    Article  CAS  PubMed  Google Scholar 

  4. Cho, A., Haruyama, N., and Kulkarni, A., Generation of Transgenic Mice, Current Protocols in Cell Biology [Internet], Hoboken, NJ, USA: John Wiley and Sons, Inc., 2009.

    Google Scholar 

  5. Damert, A. and Kusserow, H., Generation of transgenic mice by pronuclear injection, in Blood–Brain Barrier, New Jersey: Humana Press, 2003, pp. 513–528.

    Google Scholar 

  6. Deĭkin, A.V., Kovrazhkina, E.A., Ovchinnikov, R.K., et al., A mice model of amyotrophic lateral sclerosis expressing mutant human FUS protein, Zh. Nevrol. Psikhiatr. im. S.S. Korsakova, 2014, vol. 114, no. 8, pp. 62–69.

    PubMed  Google Scholar 

  7. Deykin, A.V., Ermolkevich, T.G., Gursky, Y.G., et al., The state of health and the reproductive potential of transgenic mice secreting recombinant human lactoferrin in milk, Dokl. Biochem. Biophys., 2009, vol. 427, pp. 195–198.

    Article  CAS  PubMed  Google Scholar 

  8. Freitas, V., Serova, I., Moura, R., et al., The establishment of two transgenic goat lines for mammary gland hG-CSF expression, Small Rumin. Res., 2012, vol. 105, nos. 1–3, pp. 105–113.

    Article  Google Scholar 

  9. Goldman, I., Georgieva, S., Gurskiy, Y., et al., New opportunities of using transgenic milk animals for pharmaceutical human protein production, Transgenic Res., 2012a, vol. 21, no. 4, p. 923.

    Google Scholar 

  10. Goldman, I., Georgieva, S., Gurskiy, Y., et al., Production of human lactoferrin in animal milk, Biochem. Cell Biol., 2012b, vol. 90, no. 3, pp. 513–519.

    Article  CAS  PubMed  Google Scholar 

  11. Gurskiy, Y., Garbuz, D., Soshnikova, N., et al., The development of modified human Hsp70 (HSPA1A) and its production in the milk of transgenic mice, Cell Stress Chaperones, 2016, vol. 21, no. 6, pp. 1055–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gursky, Y., Bibilashvili, R., Minashkin, M., et al., Expression of full-length human pro-urokinase in mammary glands of transgenic mice, Transgenic Res., 2009, vol. 18, no. 5, pp. 747–756.

    Article  CAS  PubMed  Google Scholar 

  13. Hansson, L., Edlund, M., Edlund, A., et al., Expression and characterization of biologically active human extracellular superoxide dismutase in milk of transgenic mice, J. Biol. Chem., 1994, vol. 269, no. 7, pp. 5358–5363.

    CAS  PubMed  Google Scholar 

  14. Hasler, J., Forty years of embryo transfer in cattle: a review focusing on the journal theriogenology, the growth of the industry in North America, and personal reminisces, Theriogenology, 2014, vol. 81, no. 1, pp. 152–169.

    Article  PubMed  Google Scholar 

  15. Ittner, L. and Götz, J., Pronuclear injection for the production of transgenic mice, Nat. Protoc., 2007, vol. 2, no. 5, pp. 1206–1215.

    Article  CAS  PubMed  Google Scholar 

  16. Kadulin, S., Ermolkevich, T., and Andreeva, L., Analysis of transfer of microinjected zygotes in production of transgenic mice, Russ. J. Dev. Biol., 2006, vol. 37, no. 2, pp. 85–89.

    Article  CAS  Google Scholar 

  17. Lisauskas, S., Cunha, N., Vianna, G., et al., Expression of functional recombinant human factor ix in milk of mice, Biotechnol. Lett., 2008, vol. 30, no. 12, pp. 2063–2069.

    Article  CAS  PubMed  Google Scholar 

  18. Maksimenko, O.G., Deykin, A.V., Khodarovich, Y.M., et al., Use of transgenic animals in biotechnology: prospects and problems, Acta Naturae, 2013, vol. 5, no. 1, pp. 33–46.

    Article  CAS  Google Scholar 

  19. Niavarani, A., Dehghanizadeh, S., Zeinali, S., et al., Development of transgenic mice expressing calcitonin as a beta-lactoglobulin fusion protein in mammary gland, Transgenic Res., 2005, vol. 14, no. 5, pp. 719–727.

    Article  CAS  PubMed  Google Scholar 

  20. Pandian, Z., Marjoribanks, J., Ozturk, O., et al., Number of Embryos for Transfer Following in vitro Fertilisation or Intra-Cytoplasmic Sperm Injection, Cochrane Database of Systematic Reviews, Chichester: UK: John Wiley and Sons, Ltd., 2013.

    Google Scholar 

  21. Robinson, H.K., Deykin, A.V., Bronovitsky, E.V., et al., Early lethality and neuronal proteinopathy in mice expressing cytoplasm-targeted FUS that lacks the RNA recognition motif, Amyotroph. Lateral. Scler. Front. Degener., 2015, vol. 16, nos. 5–6, pp. 402–409.

    Article  CAS  Google Scholar 

  22. Rodriguez, A., Castro, F.O., Aguilar, A., et al., Expression of active human erythropoietin in the mammary gland of lactating transgenic mice and rabbits, Biol. Res., 1995, vol. 28, no. 2, pp. 141–153.

    CAS  PubMed  Google Scholar 

  23. Scherzer, J., Fayrer-Hosken, R., Ray, L., et al., Advancements in large animal embryo transfer and related biotechnologies, Reprod. Domest. Anim., 2008, vol. 43, no. 3, pp. 371–376.

    Article  CAS  PubMed  Google Scholar 

  24. Shelkovnikova, T.A., Peters, O.M., Deykin, A.V., et al., Fused in sarcoma (FUS) protein lacking nuclear localization signal (NLS) and major RNA binding motifs triggers proteinopathy and severe motor phenotype in transgenic mice, J. Biol. Chem., 2013, vol. 288, no. 35, pp. 25266–25274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Silaeva, Y.Y., Kalinina, A.A., Vagida, M.S., et al., Decrease in pool of T lymphocytes with surface phenotypes of effector and central memory cells under influence of TCR transgenic β-chain expression, Biochemistry (Moscow), 2013, vol. 78, no. 5, pp. 549–559.

    CAS  PubMed  Google Scholar 

  26. Silaeva, Y.Y., Grinenko, T.S., Vagida, M.S., et al., Immune selection of tumor cells in TCR β-chain transgenic mice, J. Immunotoxicol., 2014, vol. 11, no. 4, pp. 393–399.

    Article  CAS  PubMed  Google Scholar 

  27. Sokolov, V.E., Zhizn zhivotnykh (Life of Animals), Moscow: Prosveshchenie, 1989, vol. 7.

    Google Scholar 

  28. Voncken, J.W., Genetic modification of the mouse: general technology—pronuclear and blastocyst injection, in Transgenic Mouse Methods and Protocols, Totowa, NJ: Humana Press, 2011, pp. 11–36.

    Google Scholar 

  29. Yu, H., Chen, J., Sun, W., et al., The dominant expression of functional human lactoferrin in transgenic cloned goats using a hybrid lactoferrin expression construct, J. Biotechnol., 2012, vol. 161, no. 3, pp. 198–205.

    Article  CAS  PubMed  Google Scholar 

  30. Yu, H., Chen, J., Liu, S., et al., Large-scale production of functional human lysozyme in transgenic cloned goats, J. Biotechnol., 2013, vol. 168, no. 4, pp. 676–683.

    Article  CAS  PubMed  Google Scholar 

  31. Zander-Fox, D.L., Tremellen, K., and Lane, M., Single blastocyst embryo transfer maintains comparable pregnancy rates to double cleavage-stage embryo transfer but results in healthier pregnancy outcomes: the benefits of single blastocyst transfer, Aust. N. Z. J. Obstet. Gynaecol., 2011, vol. 51, no. 5, pp. 406–410.

    Article  PubMed  Google Scholar 

  32. Zhang, J., Li, L., Cai, Y., et al., Expression of active recombinant human lactoferrin in the milk of transgenic goats, Protein Expr. Purif., 2008, vol. 57, no. 2, pp. 127–135.

    Article  CAS  PubMed  Google Scholar 

  33. Zvezdova, E.S., Silaeva, Y.Y., Vagida, M.S., et al., Generation of transgenic animals expressing the α and β chains of the autoreactive t-cell receptor, Mol. Biol., 2010, vol. 44, no. 2, p. 277.

Download references

ACKNOWLEDGMENTS

This work was performed with support from the Russian Science Foundation, project no. 16-14-00150 (2470 mouse embryos were transplanted into 269 recipients, 277 calves were obtained. The results of transplantation and statistical processing were systematized).

The work was conducted using equipment of the Center for Shared Use of the Gene Biology Institute of the Russian Academy of Sciences.

We would like to thank A.I. Budevich and I.L. Goldman for invaluable assistance in mastering the technology of creating genetically modified animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Deikin.

Additional information

Translated by P. Kuchina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silaeva, Y.Y., Kirikovich, Y.K., Skuratovskaya, L.N. et al. Optimal Number of Embryos for Transplantation in Obtaining Genetic-Modified Mice and Goats. Russ J Dev Biol 49, 356–361 (2018). https://doi.org/10.1134/S106236041806005X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106236041806005X

Keywords:

Navigation