Skip to main content
Log in

Embryonic development of mushroom bodies in Pterostichus niger schall. (Coleoptera: Carabidae)

  • Zoology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

This study demonstrates that the number of stem cells in mushroom bodies of the ground beetle Pterostichus niger increases already in the first half of embryogenesis and that this timing allows for an intensive increase of the number of neurons that compose the mushroom bodies during the second half of embryonic development. The degree of development of the mushroom bodies in new-born P. niger larvae was shown to be higher than that in new-born larvae of any other holometabolous insect investigated previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ardin, P., Peng, F., Mangan, M., Lagogiannis, K., and Webb, B., Using an insect mushroom body circuit to encode route memory in complex natural environment, PLos Comp. Biol., 2016, vol. 12, no. 2, p. e1004683.

    Article  Google Scholar 

  • Bate, C.M., Embryogenesis of an insect nervous system. I. A map of the thoracic and abdominal neuroblasts in Locusta migratoria, J. Embryol. Exp. Morphol., 1976, vol. 35, pp. 107–123.

    CAS  PubMed  Google Scholar 

  • Bello, B.C., Izergina, N., Caussinus, E., and Reichert, H., Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development, Neural Dev., 2008, vol. 3, no. 5, pp. 1–17.

    Google Scholar 

  • Boone, J.Q. and Doe, C.Q., Identification of Drosophila type I Ineuroblast lineages containing transit amplifying ganglion mother cells, Dev. Neurobiol., 2008, vol. 68, no. 9, pp. 1185–1195.

    Article  PubMed  PubMed Central  Google Scholar 

  • Egger, B., Gold, K.S., and Brand, A.H., Regulating the balance between symmetric and asymmetric stem cell division in the developing brain, Fly (Austin), 2011, vol. 5, no. 3, pp. 237–241.

    Article  CAS  Google Scholar 

  • Farris, S.M., Robinson, G.E., Davis, R.L., and Fahrbach, S.E., Larval and pupal development of the mushroom bodies in the honey bee, Apis mellifera, J. Comp. Neurol., 1999, vol. 414, pp. 97–113.

    Article  CAS  PubMed  Google Scholar 

  • Ito, K. and Hotta, Y., Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster, Dev. Biol., 1992, vol. 149, pp. 134–148.

    Article  CAS  PubMed  Google Scholar 

  • Ito, K., Awano, W., Suzuki, K., Hiromi, Y., and Yamamoto, D., The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurons and glial cells, Development, 1997, vol. 124, pp. 761–771.

    CAS  PubMed  Google Scholar 

  • Jiang, X., Tang, C., Gao, H., and Cui, H., Mechanisms of asymmetric cell divisions in rosophila mushroomt neuroblasts, Invert. Surviv. J., 2014, vol. 11, pp. 103–108.

    Google Scholar 

  • Knobloch, J.A., Mechanisms of asymmetric stem cell division, Cell, 2008, vol. 132, no. 4, pp. 583–597.

    Article  Google Scholar 

  • Kobayashi, Y., Niikura, K., Oosawa, Y., and Takami, Y., Embryonic development of Carabus insulicola (Insecta, Coleoptera, Carabidae) with special reference to external morphology and tangible evidence for the subcoxal theory, J. Morphol., 2013, vol. 274, pp. 1323–1352.

    Article  PubMed  Google Scholar 

  • Kunz, T., Kraft, K.F., Technau, G.M., and Urbach, R., Origin of Drosophila mushroom body neuroblasts and generation of divergent embryonic lineages, Development, 2012, vol. 139, no. 14, pp. 2510–2522.

    Article  CAS  PubMed  Google Scholar 

  • Monsma, S.A. and Booker, K., Genesis of adult retina and outer optic lobes of the moth, Manduca sexta L. I. Patterns of proliferation and cell death, J. Comp. Neurol., 1996, vol. 367, pp. 10–20.

    Article  CAS  PubMed  Google Scholar 

  • Nordlander, R.H. and Edwards, J.S., Postembryonic brain development in the monarch butterfly, Danaus plexippus plexippus L. II. The optic lobes, Roux’s Arch., 1969, vol. 163, pp. 197–220.

    Article  Google Scholar 

  • Nordlander, R.H. and Edwards, J.S., Postembryonic brain development in the monarch butterfly, Danaus plexippus plexippus L. III. Morphogenesis of centers other than the optic lobes, Roux’s Arch., 1970, vol. 164, pp. 247–260.

    Article  Google Scholar 

  • Panov, A.A., The structure of the insect brain at successive stages of post-embryonic development, Entomol. Obozr., 1957, vol. 36, no. 2, pp. 269–284.

    Google Scholar 

  • Panov, A.A., The structure of the insect brain at successive stages of post-embryonic development. 3. Optic lobes, Entomol. Obozr., 1960, vol. 39, no. 1, pp. 86–105.

    Google Scholar 

  • Panov, A.A., Histological structure of tripartite mushroom bodies in ground beetles (Insecta, Coleoptera: Carabidae), Biol. Bull. (Moscow), 2013, vol. 40, no. 5, pp. 455–462.

    Article  Google Scholar 

  • Panov, A.A., A novel, unusual (at least for beetles) mode of Kenyon cell production in the diving beetle Cybister lateralimarginalis Deg. (Coleoptera: Dytiscidae), Biol. Bull. (Moscow), 2014a, vol. 41, no. 2, pp. 149–153.

    Article  Google Scholar 

  • Panov, A.A., Not all Dytiscidae (Insecta, Coleoptera) have poorly developed mushroom bodies: the enigma of Cybister lateralimarginalis, Zool. Zh., 2014b, vol. 93, no. 4, pp. 549–558.

    Google Scholar 

  • Panov, A.A., General brain structure of new-born larva and neuroblasts in larval mushroom bodies in Pterostichus niger Deg. (Coleoptera: Carabidae), Biol. Bull. (Moscow), 2015, vol. 42, no. 5, pp. 419–425.

    Article  Google Scholar 

  • Patel, N.H., Imaging neuronal subsets and other cell types in whole-mount Drosophila embryos and larvae using antibody probes, in Methods in Cell Biology, Goldstein, L.S.B. and Fyrberg, E.A., Eds., New York: Acad. Press, 1994, vol. 44, pp. 446–488.

    Google Scholar 

  • Romeis, V., Mikroskopicheskaya tekhnika (The Microscopic Technique), Moscow: Izd. Inostr. Lit., 1953.

    Google Scholar 

  • Schrader, K., Untersuchungen über die Normalentwicklung des Gehirns und Gehirnexplantationen bei der Mehlmotte Ephestia kühniella Zeller nebst einiger Bemerkungen über das Corpus allatum, Biol. Zentralbl., 1938, vol. 58, pp. 52–90.

    Google Scholar 

  • Strausfeld, N.J., Sinakevich, I., Brown, S.M., and Farris, S.M., Ground plan of the insect mushroom body: functional and evolutionary implications, J. Comp. Neurol., 2009, vol. 513, pp. 265–291.

    Article  PubMed  PubMed Central  Google Scholar 

  • Urbach, R., Technau, G.M., and Breidbach, O., Spatial and temporal pattern of neuroblast proliferation, and engrailed expression during early brain development in Tenebrio molitor L. (Coleoptera), Arthr. Struct. Dev., 2003, vol. 32, pp. 132–140.

    Google Scholar 

  • Urbach, R. and Technau, G.M., Early steps in building insect brain: neuroblast formation and segmental pattering in the developing brain of different insect species, Arthr. Struct. Dev., 2003, vol. 32, pp. 103–123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Panov.

Additional information

Original Russian Text © A.A. Panov, 2017, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2017, No. 5, pp. 527–533.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panov, A.A. Embryonic development of mushroom bodies in Pterostichus niger schall. (Coleoptera: Carabidae). Biol Bull Russ Acad Sci 44, 511–516 (2017). https://doi.org/10.1134/S1062359017050132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359017050132

Navigation