Skip to main content
Log in

Anthropogenic Source of Gold in Moscow Urban Dust

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Estimation of the concentration and distribution of gold in the dust, soil, bottom sediments, and technological dumps is an essential task of analytical chemistry, which must be solved not only in assessing recoverable resources. The determination of gold also has an environmental aspect, because this metal was recognized an allergen. In the present work, over 80 samples of Moscow Urban dust were studied using complementary analytical methods: inductively coupled plasma–mass spectrometry and scanning electron microscopy with energy dispersive X-ray spectroscopy. In some samples, the concentration of gold exceeded 1 µg/g and even reached 30–35 µg/g. Gold is present in the dust as microparticles no larger than 2–3 µm in size. The high concentration of gold in particles (about 99%) virtually excludes jewelry as its source. The study of the sampling map suggests that, with a high probability, the main anthropogenic source of gold in Moscow Urban dust is the gradual wear of church domes covered with high-grade gold leaf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Vinogradov, A.P., Geokhimiya, 1962, no. 7, p. 555.

  2. Taylor, S.R., Geochim. Cosmochim. Acta, 1964, vol. 28, no. 8, p. 1273.

    Article  CAS  Google Scholar 

  3. Taylor, S.R., The Continental Crust: Its Composition and Evolution, Oxford: Blackwell, 1985.

    Google Scholar 

  4. Grigor’ev, N.A., Ural. Geol. Zh., 2010, vol. 3, no. 75, p. 85.

    Google Scholar 

  5. Rudnick, R.L., Gao, S., Rudnick, R.L., and Gao, S., Treatise Geochem., 2003, vol. 3, p. 659.

    Google Scholar 

  6. Eisler, R., Environ. Monit. Assess., 2004, vol. 90, nos. 1–3, p. 73.

    Article  CAS  Google Scholar 

  7. U.S. Geological Survey: Mineral Commodity Summaries 2021, Reston: U.S. Geol. Survey, 2021.

  8. Messerschmidt, J., von Bohlen, A., Alt, F., and Klockenkämper, R., Analyst, 2000, vol. 125, no. 3, p. 397.

    Article  CAS  Google Scholar 

  9. Prichard, H.M., Jackson, M.T., and Sampson, J., Sci. Total Environ., 2008, vol. 401, nos. 1–3, p. 90.

    Article  CAS  Google Scholar 

  10. Prichard, H.M., Sampson, J., and Jackson, M., Sci. Total Environ., 2009, vol. 407, no. 5, p. 1715.

    Article  CAS  Google Scholar 

  11. Dongarra, G., Sabatino, G., Triscari, M., and Varrica, D., J. Environ. Monit., 2003, vol. 5, no. 5, p. 766.

    Article  CAS  Google Scholar 

  12. Qi, L., Zhou, M.F., Zhao, Z., Hu, J., and Huang, Y., Environ. Earth Sci., 2011, vol. 64, no. 6, p. 1683.

    Article  CAS  Google Scholar 

  13. Prichard, H.M., Wedin, F., Sampson, J., Jackson, M.T., and Fisher, P.C., Water Environ. J., 2016, vol. 30, nos. 1–2, p. 151.

    Article  CAS  Google Scholar 

  14. Birke, M., Rauch, U., Stummeyer, J., Lorenz, H., and Keilert, B., J. Geochem. Explor., 2018, vol 187, p. 72.

    Article  CAS  Google Scholar 

  15. Poňavič, M., Wittlingerová, Z., Čoupek, P., and Buda, J., J. Geochem. Explor., 2018, vol. 187, p. 118.

    Article  Google Scholar 

  16. Hooda, P.S., Miller, A., and Edwards, A.C., Sci. Total Environ., 2007, vol. 384, nos. 1–3, p. 384.

    Article  CAS  Google Scholar 

  17. Alsubaie, A., Jaafar, M., Al-Dabbous, A.N., Alomairy, S., Altowairqi, Y., Daar, E., Alkhorayef, M., Alsulaiti, L., Almugren, K.S., Ward, N.I., and Bradley, D.A., Radiat. Phys. Chem., 2019, vol. 155, p. 341.

    Article  CAS  Google Scholar 

  18. Dongarraá, G., Varrica, D., and Sabatino, G., Appl. Geochem., 2003, vol. 18, no. 1, p. 109.

    Article  Google Scholar 

  19. Mellor, J.R., Palazov, A.N., Grigorova, B.S., Greyling, J.F., Reddy, K., Letsoalo, M.P., and Marsh, J.H., Catal. Today, 2002, vol. 72, nos. 1–2, p. 145.

    Article  CAS  Google Scholar 

  20. Ehrlich, A. and Belsito, D.V., Cutis, 2000, vol. 65, no. 5, p. 323.

    CAS  Google Scholar 

  21. Tous-Romero, F., Andrés-Lencina, J.J., Calleja-Algarra, A., and Ortiz de Frutos, F.J., J. Eur. Acad. Dermatol. Venereol., 2019, vol. 33, no. 5, e203.

    Article  CAS  Google Scholar 

  22. Tammaro, A., Tuchinda, P., Persechino, S., and Gaspari, A., Int. J. Immunopathol. Pharmacol., 2011, vol. 24, no. 4, p. 1111.

    Article  CAS  Google Scholar 

  23. Poziomkowska-Gęsicka, I., Summer, B., Sokolowska, M., Thomas, P., and Kurek, M., Contact Dermatitis, 2018, vol. 78, no. 5, p. 363.

    Article  Google Scholar 

  24. Watsky, K.L., Contact Dermatitis, 2007, vol. 57, no. 6, p. 382.

    Article  Google Scholar 

  25. Giorgini, S., Tognetti, L., Zanieri, F., and Lotti, T., Dermatitis, 2010, vol. 21, no. 5, p. 284.

    Article  Google Scholar 

  26. Reith, F., Lengke, M.F., Falconer, D., Craw, D., and Southam, G., ISME J., 2007, vol. 1, p. 567.

    Article  CAS  Google Scholar 

  27. Sanyal, S.K., Shuster, J., and Reith, F., Earth—Sci. Rev., 2019, vol. 190, p. 131.

    Article  CAS  Google Scholar 

  28. Karthikeyan, S. and Beveridge, T.J., Environ. Microbiol., 2002, vol. 4, no. 11, p. 667.

    Article  CAS  Google Scholar 

  29. Lengke, M.F., Ravel, B., Fleet, M.E., Wanger, G., Gordon, R.A., and Southam, G., Environ. Sci. Technol., 2006, vol. 40, no. 20, p. 6304.

    Article  CAS  Google Scholar 

  30. Ta, C., Brugger, J., Pring, A., Hocking, R.K., Lenehan, C.E., and Reith, F., Chem. Geol., 2015, vols. 407–408, p. 10.

    Article  Google Scholar 

  31. Cohen, D.R. and Waite, T.D., Geochem. Explor. Environ. Anal., 2004, vol. 4, no. 3, p. 279.

    Article  CAS  Google Scholar 

  32. Grebneva-Balyuk, O.N. and Kubrakova, I.V., J. Anal. Chem., 2020, vol. 75, no. 3, p. 275.

    Article  CAS  Google Scholar 

  33. Karandashev, V.K., Khvostikov, V.A., Nosenko, S.Yu., and Burmii, Zh.P., Inorg. Mater., 2017, vol. 53, no. 14, p. 1432.

    Article  CAS  Google Scholar 

  34. Chao, T.T. and Sanzolone, R.F., J. Geochem. Explor., 1992, vol. 44, nos. 1–3, p. 65.

    Article  CAS  Google Scholar 

  35. GOST (State Standard) 6835-200: Gold and Alloys on Its Basis. Stamps, Moskva: Standartinform, 2002.

  36. GOST (State Standard) 6902-2018: Gold and Silver Leaf. Specifications, Moskva: Standartinform, 2018.

Download references

Funding

The study corresponds to the research plan of the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Science. The sampling and elemental analysis of dust samples by ICP–MS was supported by the Russian Foundation for Basic Research, grant no. 21-33-70091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Ermolin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermolin, M.S., Ivaneev, A.I., Brzhezinskiy, A.S. et al. Anthropogenic Source of Gold in Moscow Urban Dust. J Anal Chem 77, 1340–1348 (2022). https://doi.org/10.1134/S1061934822100045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934822100045

Keywords:

Navigation