Skip to main content
Log in

Ion Mobility Spectrometry of Imidazole and Possibilities of Its Determination

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The drift time and ion mobility of imidazole are determined and a procedure for the mathematical processing of spectra is developed. The specific features of changes in the ion mobility spectrum during measurements at a particular time are studied. The structures of the generated ions are proposed based on the interpretation of spectral signals, and the enthalpies of formation of the generated ions are estimated. The characteristic signal of the imidazole ion protonated at the nitrogen atom of the pyridine type was revealed. The limit of detection for imidazole in recording with the Kerber detector was found to be 0.3 ng.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Buryakov, I.A., J. Anal. Chem., 2011, vol. 66, no. 11, 1095.

    Article  CAS  Google Scholar 

  2. Eiceman, G.A., Kapras, Z., and Hill, H.H., Ion Mobility Spectrometry, Boca Raton: CRC, 2014, 3rd ed.

    Google Scholar 

  3. Buryakov, I.A., Kolomiets, Yu.N., and Luppu, V.B., J. Anal. Chem., 2001, vol. 56, p. 336.

    Article  CAS  Google Scholar 

  4. Krisilova, E.V., Levina, A.M., and Makarenko, V.A., J. Anal. Chem., 2014, vol. 69, no. 4, p. 371.

    Article  CAS  Google Scholar 

  5. Hana Hai-yan, Wanga Hong-mei, Jiang Hai-he, Stanob Michal, Sabob Martin, Matejcikb Stefan, and Chu Yan-nan, Chin. J. Chem. Phys., 2009, vol. 22, no. 6, p. 604.

    Google Scholar 

  6. Yang Liu Sihou, Huihui, Huang Xi, Zhan Lingpeng, Luo Peiqi, Xue Jinjuan, Chen Rui, and Nie Zongxiu, Int. J. Mass Spectrom. Ion Processes, 2018, vol. 434, p. 93.

    Article  Google Scholar 

  7. Byungsuk Cho, Han Soo Cho, Junghyun Kim, Juhyun Sim, Ilung Seol, Seung Kyung Baeck, Sangwhan In, Dae Hwan Shin, and Eunmi Kim, Forensic Sci. Int., 2020, vol. 306, 110058.

    Article  CAS  Google Scholar 

  8. Liao, S. and Liang, X., Int. J. Ion Mobility Spectrom, 2020, vol. 23, p. 97.

    Article  CAS  Google Scholar 

  9. Tose Lilian, V., Santos Nayara, A., Rodrigues Rayza, R.T., Murgu Michael, Santos Alexandre, F., Vasconcelos Gessica, A., Souza Paulo, T.C., Vaz Boniek, G., and Romao Wanderson, Int. J. Mass Spectrom. Ion Processes, 2016, vol. 418, p. 112.

    Article  Google Scholar 

  10. Zhou, Z.G., Yang, B.F., Wu, G., and Zhou, X.J., Chin. J. Forensic Med., 2015, vol. 30, p. 594.

    Google Scholar 

  11. Charlton, A.J.A. and Jones, A., J. Chromatogr. A, 2007, vol. 1141, no. 1, p. 117.

    Article  CAS  Google Scholar 

  12. Marques, L. and Anibal, T., Application of Odor Sensors in Mobile Robotics: Autonomous Robotic Systems, London: Springer, 1998.

    Book  Google Scholar 

  13. Schofield, K. and Grim-mett, M.R., Heteroaromatic Nitrogen Compounds: The Azoles, Cambridge: Cambridge Univ. Press, 1976.

    Google Scholar 

  14. Yuzhpolymetal Holding. Kerber-T portable ion-drift detector. http://www.analizator.ru/production/ims/kerber-t/. Accessed April 12, 2021.

  15. Gromov, E.A., Cand. Sci. (Eng.) Dissertation, Moscow: Natl. Res. Nucl. Univ. MEPHI, 2018.

  16. Aleksandrova, D.A., Baberkina, E.P., Grishin, S.S., Gushchina, A.A., Kurbanova, D.M., Trefilova, V.V., Kovalenko, A.E., Shaltaeva, Yu.R., and Belyakov, V.V., Abstracts of Papers, XXII Vseross. konf. molodykh uchenykh-khimikov (s mezhdunarodnym uchastiem) (XXII All-Russian Conf. of Young Chemists with International Participation), Nizhnii Novgorod, 2019, p. 277.

  17. Aleksandrova, D.A., Baberkina, E.P., Dubkina, E.A., Kovalenko, A.E., Shaltaeva, Yu.R., and Belyakov, V.V., in Aktual’nykh aspektov khimicheskoi tekhnologii biologicheski-aktivnykh veshchestv: sbornik nauchnykh trudov (Actual Aspects of Chemical Technology of Biologically Active Substances: Collection of Scientific Papers), Moscow, 2020, p. 34.

  18. Grishin, S.S., Negru, K.I., Baberkina, E.P., Kovalenko, A.E., Gushchina, A.A., Aleksandrova, D.A., Shutova, Y.E., Zharikov, A.P., Dorskaya, E.V., Shaltaeva, Y.R., Belyakov, V.V., Golovin, A.V., Gromov, E.A., Matusko, M.A., and Khamraev, V.F., J. Phys.: Conf. Ser., 2019, vol. 498, 012036.

    CAS  Google Scholar 

  19. Gabelica, V. and Marklund, E., Curr. Opin. Chem. Biol., 2018, vol. 42, p. 51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Aleksandrova.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrova, D.A., Melamed, T.B., Baberkina, E.P. et al. Ion Mobility Spectrometry of Imidazole and Possibilities of Its Determination. J Anal Chem 76, 1282–1289 (2021). https://doi.org/10.1134/S1061934821110022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821110022

Keywords:

Navigation