Skip to main content
Log in

A Dual Screen-Printed Electrode with Palladium Nanoparticles for the Flow-Injection Amperometric Determination of Dopamine and Adrenaline

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

We proposed a method for the selective and highly sensitive amperometric determination of dopamine and adrenaline in the presence of ascorbic and uric acids in a flow-injection system. Screen-printed electrodes modified with palladium nanoparticles, exhibiting catalytic activity in the electrooxidation of catecholamines, were used as a detector. The difference between the oxidation peak potentials of these compounds is 200 mV. A linear bilogarithmic dependence of the analytical signal on the concentration of dopamine and adrenaline is observed in the ranges from 5 × 10–12 to 5 × 10–8 M and from 1 × 10–9 to 1 × 10–5 M, respectively. For simultaneous two-component analysis, screen-printed electrodes with two working electrodes were used, that is, dual screen-printed electrodes modified with palladium nanoparticles, which enable two substances to be determined simultaneously at two different potentials. The proposed method for the joint flow-injection amperometric determination of dopamine and adrenaline using a modified dual screen-printed electrode was tested in the analysis of urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Michael, D.J. and Wightman, R.M., J. Pharm. Biomed. Anal., 1999, vol. 19, nos. 1–2, p. 33.

    Article  CAS  Google Scholar 

  2. Webster, R. and Jordan, C., Neurotransmitters, Drugs and Disease, Oxford: Blackwell, 1989.

    Google Scholar 

  3. Sorouraddin, M.H., Manzoori, J.L., Kargarzadeh, E., and Haji Shabani, A.M., J. Pharm. Biomed. Anal., 1998, vol. 18, nos. 4–5, p. 877.

    Article  CAS  Google Scholar 

  4. Shaidarova, L.G. and Budnikov, H.C., J. Anal. Chem., 2008, vol. 63, no. 10, 922.

    Article  CAS  Google Scholar 

  5. Shaidarova, L.G., Chelnokova, I.A., Il’ina (Degteva), M.A., Gedmina, A.V., and Budnikov, H.C., Uch. Zap. Kazan. Univ.,Ser. Estestv. Nauki, 2015, vol. 157, no. 3, p. 132.

    CAS  Google Scholar 

  6. Savk, A., Ozdil, B., Demirkan, B., Nas, M.S., Calimli, M.H., Alma, M.H., Inamuddin Asiri, A.M., and Sen, F., Mater. Sci. Eng., C, 2019, vol. 99, p. 248.

    Article  CAS  Google Scholar 

  7. Asunción Alonso-Lomillo, M., Domínguez-Renedo, O., Saldaña-Botín, A., and Arcos-Martínez, M.J., Talanta, 2017, vol. 174, p. 733.

    Article  Google Scholar 

  8. Mohamadi, M., Mostafavi, A., and Torkzadeh-Mahani, M., Biosens. Bioelectron., 2014, vol. 54, p. 211.

    Article  CAS  Google Scholar 

  9. Zheng, Y.-Y., Li, C.-X., Ding, X.-T., Yang, Q., and Qu, L.-T., Chin. Chem. Lett., 2017, vol. 28, no. 7, p. 1473.

    Article  CAS  Google Scholar 

  10. Kim, D., Lee, S., and Piao, Y., J. Electroanal. Chem., 2017, vol. 794, p. 221.

    Article  CAS  Google Scholar 

  11. Sochr, J., Švorc, L., Rievaj, M., and Bustin, D., Diamond Relat. Mater., 2014, vol. 43, p. 5.

    Article  CAS  Google Scholar 

  12. Reddy, K.K., Satyanarayana, M., Goud, K.Y., Gobi, K.V., and Kim, H., Mater. Sci. Eng., C, 2017, vol. 79, p. 93.

    Article  Google Scholar 

  13. Zhou, Y.Z., Zhang, L.J., Chen, S.L., Dong, S.Y., and Zheng, X.H., Chin. Chem. Lett., 2009, vol. 20, no. 2, p. 217.

    Article  CAS  Google Scholar 

  14. Canevari, T.C., Nakamura, M., Cincotto, F.H., de Melo, F.M., and Toma, H.E., Electrochim. Acta, 2016, vol. 209, p. 464.

    Article  CAS  Google Scholar 

  15. Wang, Y. and Chen, Z.-Z., Colloids Surf., B, 2009, vol. 74, no. 1, p. 322.

    Article  CAS  Google Scholar 

  16. Ghanbari, Kh. and Hajian, A., J. Electroanal. Chem., 2017, vol. 801, p. 466.

    Article  CAS  Google Scholar 

  17. Taei, M., Hasanpour, F., Tavakkoli, N., and Bahrameian, M., J. Mol. Liq., 2015, vol. 211, p. 353.

    Article  CAS  Google Scholar 

  18. Lavanyaa, N., Fazio, E., Neri, F., Bonavitac, A., Leonardi, S.G., Neri, G., and Sekar, C., Sens. Actuators, B, 2015, vol. 221, p. 1412.

    Article  Google Scholar 

  19. Dinesh, B., Saraswathi, R., and Kumar, A.S., Electrochim. Acta, 2017, vol. 233, p. 92.

    Article  CAS  Google Scholar 

  20. Rahman, Md.M., Lopa, N.S., Ju, M.J., and Lee, J.-J., J. Electroanal. Chem., 2017, vol. 792, p. 54.

    Article  CAS  Google Scholar 

  21. Zhang, Y., Ren, W., and Zhang, S., Int. J. Electrochem. Sci., 2013, vol. 8, no. 5, p. 6839.

    CAS  Google Scholar 

  22. Shaidarova, L.G. and Budnikov, H.C., in Farmatsevticheskii analiz (Pharmaceutical Analysis), vol. 16 of Problemy analiticheskoi khimii (Problems of Analytical Chemistry), Moscow: ANRAMAK-MEDIA, 2013, p. 580.

  23. Bulatov, A.V. Moskvin, A.L., Moskvin, L.N., Vakh, K.S., Fal’kova, M.T., and Shishov, A.Yu., Nauchn. Priborostr., 2015, vol. 25, no. 2, p. 3.

    Article  Google Scholar 

  24. Shaidarova, L.G., Chelnokova, I.A., Gedmina, A.V., Budnikov, H.C., Ziganshina, S.A., Mozhanova, A.A., and Bukharaev, A.A., J. Anal. Chem., 2006, vol. 61, no. 4, p. 375.

    Article  CAS  Google Scholar 

  25. Shaidarova, L.G., Chelnokova, I.A., Leksina, Yu.A., Il’ina, M.A., Gedmina, A.V., and Budnikov, H.C., J. Anal. Chem., 2018, vol. 73, no. 2, p. 176.

    Article  CAS  Google Scholar 

  26. Venton, B.J. and Wightman, R.M., Anal. Chem., 2003, vol. 75, no. 19, p. 414.

    Article  Google Scholar 

  27. Casella, I.G., Electrochim. Acta, 1999, vol. 44, no. 19, p. 3353.

    Article  CAS  Google Scholar 

  28. Gorokhovskaya, V.I. and Gorokhovskii, V.M., Praktikum po elektrokhimicheskim metodam analiza (Practical Works on Electrochemical Methods of Analysis), Moscow: Vysshaya Shkola, 1983.

  29. Veselova, I.A., Sergeeva, E.A., Makedonskaya, M.I., Eremina, O.E., Kalmykov, S.N., and Shekhovtsova, T.N., J. Anal. Chem., 2016, vol. 71, no. 12, p. 1155.

    Article  CAS  Google Scholar 

Download references

Funding

The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Shaidarova.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaidarova, L.G., Chelnokova, I.A., Leksina, Y.A. et al. A Dual Screen-Printed Electrode with Palladium Nanoparticles for the Flow-Injection Amperometric Determination of Dopamine and Adrenaline. J Anal Chem 75, 1059–1065 (2020). https://doi.org/10.1134/S1061934820080134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820080134

Keywords:

Navigation