Skip to main content
Log in

Use of oxidation and reduction vapor generation for lowering the detection limits of iodine in biological samples by inductively coupled plasma atomic emission spectrometry

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 30 June 2009

Abstract

Procedures of microwave oxygen combustion and microwave acid digestion of biological samples were optimized for the subsequent determination of iodine. A new method was proposed for the generation of vapor iodine from periodate ions using hydrogen peroxide as a reductant. Procedures were developed for determining iodine in biological samples by inductively coupled plasma atomic emission spectrometry (ICP-AES) using oxidation and reduction vapor generation; these allowed the detection limit for iodine to be lowered by 3–4 orders of magnitude. The developed procedures were used to analyze certified reference materials of milk (Skim Milk Powder BCR 150) and seaweed (Sea Lettuce BCR 279) and a Supradyn vitamin complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avtsyn, A.P., Zhavoronkov, A.A., Rish, Sh.A., and Strochkova, L.S., Mikroelementozy cheloveka (Human Microelementoses), Moscow: Meditsina, 1991.

    Google Scholar 

  2. Nozdryukhina, L.R., Biologicheskaya rol’ mikroelementov v organizme zhivotnykh i cheloveka (The Biological Role of Trace Elements in the Animal and Human Organism), Moscow: Nauka, 1977.

    Google Scholar 

  3. Nakahara, T. and Wasa, T., Appl. Spectrosc., 1987, vol. 41, no. 7, p. 1238.

    Article  CAS  Google Scholar 

  4. Nakahara, T., Yamada, S., and Wasa, T., Appl. Spectrosc., 1990, vol. 44, no. 10, p. 1673.

    Article  CAS  Google Scholar 

  5. Dolan, S.P., Sinex, S.A., et al., Anal. Chem., 1991, vol. 63, no. 21, p. 2539.

    Article  CAS  Google Scholar 

  6. Calzada, M.D., Quintero, M.C., et al., Anal. Chem., 1992, vol. 64, no. 13, p. 1374.

    Article  CAS  Google Scholar 

  7. Ortega, M.C., Bautista, J., et al., Spectrochim. Acta, B, 1992, vol. 47B, no. 1, p. 79.

    Article  Google Scholar 

  8. Camuna, F., Sanchez Uria, J.E., and Sanz Medel, A., Spectrochim. Acta, B, 1993, vol. 48B, no. 9, p. 1115.

    Article  CAS  Google Scholar 

  9. Nakahara, T. and Mori, T., Abstracts of Papers, XXVIII Colloquium Spectroscopicum Internationale, 1993, p. 119.

  10. Gu, F., Marchetti, A.A., and Straume, T., Analyst, 1997, vol. 122, no. 6, p. 535.

    Article  CAS  Google Scholar 

  11. Knapp, G. and Maichin, B., Fresenius J. Anal. Chem., 1998, no. 362, p. 508.

  12. Gelinas, Y., Krushevska, A., and Barnes, R.M., Anal. Chem., 1998, vol. 70, no. 5, p. 1021.

    Article  CAS  Google Scholar 

  13. Souza, G.B., Carrilho, E.N.V.M., Spectrochim. Acta, B, 2002, vol. 57, no. 12, p. 2195.

    Article  Google Scholar 

  14. Flores, E.M.M., Barin, J.S., Anal. Chem., 2004, vol. 76, no. 13, p. 3525.

    Article  CAS  Google Scholar 

  15. Vtorushina, E.A., Saprykin, A.I., and Knapp, G., Zhurn. anal. khim., 2008, no. 7, p. 705 [J. Anal. Chem. (Engl. Transl.), no. 7, p. 643].

  16. Nakahara, T. and Nishida, T., Spectrochim. Acta, B, 1998, vol. 53B, nos. 6–8, p. 1209.

    Article  CAS  Google Scholar 

  17. Naozuka, Ju., Silva da Veiga, M.A.M., J. Anal. At. Spectrom., 2003, vol. 18, no. 8, p. 917.

    Article  CAS  Google Scholar 

  18. Vanhoe, H., Allemeersch, F., Analyst, 1993, vol. 118, no. 8, p. 1015.

    Article  CAS  Google Scholar 

  19. Schramel, P. and Hasse, S., Mikrochim. Acta, 1994, vol. 116, no. 4, p. 205.

    CAS  Google Scholar 

  20. Schnetger, B. and Muramatsu, Ya., Analyst, 1996, vol. 121, no. 11, p. 1627.

    Article  CAS  Google Scholar 

  21. Radlinger, G. and Heumann, K.G., Anal. Chem., 1998, vol. 70, no. 11, p. 2221.

    Article  CAS  Google Scholar 

  22. Fecher, P.A., Goldmann, I., and Nagengast, A., J. Anal. At. Spectrom., 1998, vol. 13, no. 9, p. 977.

    Article  CAS  Google Scholar 

  23. Rao, R.R. and Chatt, A., Anal. Chem., 1991, vol. 63, no. 13, p. 1298.

    Article  CAS  Google Scholar 

  24. Hou, X., Chai, Ch., Fresenius J. Anal. Chem., 1997, no. 357, p. 1106.

  25. Kucera, J., Randa, Z., and Soukal, L., J. Radioanal. Nucl. Chem., 2001, vol. 249, no. 1, p. 61.

    Article  CAS  Google Scholar 

  26. Fischer, P.W., L’Abbe, M.R., and Giroux, A., J. Assoc. Off. Anal. Chem., 1986, vol. 69, no. 4, p. 687.

    CAS  Google Scholar 

  27. Perring, L., Basic-Dvorzak, M., and Andrey, D., Analyst, 2001, vol. 126, no. 7, p. 985.

    Article  CAS  Google Scholar 

  28. Gamallo-Lorenzo, D., Barciela-Alonso, M.C., Anal. Chim. Acta, 2005, vol. 542, no. 2, p. 287.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.A. Vtorushina, A.I. Saprykin, G. Knapp, 2009, published in Zhurnal Analiticheskoi Khimii, 2009, Vol. 64, No. 2, pp. 144–150.

An erratum to this article can be found online at http://dx.doi.org/10.1134/S1061934809070193

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vtorushina, E.A., Saprykin, A.I. & Knapp, G. Use of oxidation and reduction vapor generation for lowering the detection limits of iodine in biological samples by inductively coupled plasma atomic emission spectrometry. J Anal Chem 64, 129–135 (2009). https://doi.org/10.1134/S1061934809020063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934809020063

Keywords

Navigation