Skip to main content
Log in

Solution of a cauchy problem for a diffusion equation in a Hilbert space by a Feynman formula

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

The Cauchy problem for a class of diffusion equations in a Hilbert space is studied. It is proved that the Cauchy problem in well posed in the class of uniform limits of infinitely smooth bounded cylindrical functions on the Hilbert space, and the solution is presented in the form of the so-called Feynman formula, i.e., a limit of multiple integrals against a gaussian measure as the multiplicity tends to infinity. It is also proved that the solution of the Cauchy problem depends continuously on the diffusion coefficient. A process reducing an approximate solution of an infinite-dimensional diffusion equation to finding a multiple integral of a real function of finitely many real variables is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Bogachev, Gaussian Measures (“Nauka,” Moscow, 1997; American Mathematical Society, Providence, RI, 1998).

    MATH  Google Scholar 

  2. Y. A. Butko, “The Feynman-Kac-Itô Formula for an Infinite-Dimensional Schrödinger Equation with a Scalar and Vector Potential. Rus. J. Nonlin. Dyn. 2(1), 75–87 (2006) [in Russian].

    MathSciNet  Google Scholar 

  3. Y. A. Butko, “Feynman Formula for Semigroups with Multiplicatively Perturbed Generators,” Electronic Scientific and Technical Periodical “Science and Education,” EL no. FS 77-48211, No. 0421200025 (ISSN 1994-0408); 77-30569/239563; no. 10, October 2011.

  4. Yu. L. Dalecky [Daletskii] and S. V. Fomin, Measures and Differential Equations in Infinite-Dimensional Space (“Nauka”, Moscow, 1983; Kluwer Academic Publishers Group, Dordrecht, 1991).

    Google Scholar 

  5. A. D. Egorov, E. P. Zhidkov, and Yu. Yu. Lobanov, Introduction to the theory and applications of functional integration (Moscow: Fizmatlit, 2006) [in Russian].

    Google Scholar 

  6. N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Hölder Spaces (AMS, Providence, RI, 1996; “Nauchnaya Kniga, Novosibirsk, 1998).

    MATH  Google Scholar 

  7. Yu. Yu. Lobanov, Methods of Approximate Functional Integration for Numerical Investigation of Models in Quantum Physics (Doctoral thesis, Phys.-Math. Sciences, Moscow, 2009).

    Google Scholar 

  8. O. G. Smolyanov, Analysis on Topological Linear Spaces and Applications (Moscow State University, Moscow, 1979) [in Russian].

    Google Scholar 

  9. O. G. Smolyanov and E. T. Shavgulidze, Path Integrals (Moskov. Gos. Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  10. O. G. Smolyanov, N. N. Shamarov, and M. Kpekpassi, “Feynman-Kac and Feynman Formulas for Infinite-Dimensional Equations with Vladimirov Operator,” Dokl. Ross. Akad. Nauk 438(5), 609–614 (2011) [Dokl. Math. 83 (3), 389–393 (2011)].

    MathSciNet  Google Scholar 

  11. O. G. Smolyanov and N. N. Shamarov, “Hamiltonian Feynman Formulas for Equations Containing the Vladimirov Operator with Variable Coefficients,” Dokl. Ross. Akad. Nauk 440(5), 597–602 (2011) [Dokl. Math. 84 (2), 689–694 (2011)].

    Google Scholar 

  12. N. N. Shamarov, Representations of Evolution Semigroups by Path Integrals in Real and p-Adic Spaces (Doctoral Thesis. Moscow State University, 2011).

  13. L. Schwartz, Analyse mathématique, P. 1 (Hermann, Paris, 1967).

    MATH  Google Scholar 

  14. L. C. L. Botelho, “Semi-Linear Diffusion in R D and in Hilbert Spaces, a Feynman-Wiener Path Integral Study,” Random Oper. Stoch. Equ. 19(4), 361–386 (2011); arXiv:1003.0048v1.

    Article  MathSciNet  Google Scholar 

  15. Ya. A. Butko, M. Grothaus, and O. G. Smolyanov, “Lagrangian Feynman Formulas for Second-Order Parabolic Equations in Bounded and Unbounded Domains” Infinite Dimensional Analysis, Quantum Probability and Related Topics 13(3), 377–392 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. A. Butko, R. L. Schilling, and O. G. Smolyanov, “Lagrangian and Hamiltonian Feynman Formulae for Some Feller Semigroups and Their Perturbations,” Inf. Dim. Anal. Quant. Probab. Rel. Top. (to appear); arXiv:1203.1199v1 (2012).

  17. H. Cartan, Differential Calculus (Hermann, Paris; Houghton Mifflin Co., Boston, Mass., 1971; Izdat. “Mir”, Moscow, 1971).

    MATH  Google Scholar 

  18. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations (Springer-Verlag, New York-Berlin, 1983).

    Book  MATH  Google Scholar 

  19. G. Da Prato, Introduction to Infinite-Dimensional Analysis (Springer, Berlin, 2006).

    MATH  Google Scholar 

  20. G. Da Prato and J. Zabczyk, Second Order Partial Differential Equations in Hilbert Spaces (Cambridge University Press, Cambridge, 2002).

    Book  MATH  Google Scholar 

  21. R. P. Feynman, “Space-Time Approach to Non-Relativistic Quantum Mechanics,” Rev. Mod. Phys. 20, 367–387 (1948).

    Article  MathSciNet  ADS  Google Scholar 

  22. R. P. Feynman, “An Operator Calculus Having Applications in Quantum Electrodynamics,” Phys. Rev. 84, 108–128 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. K.-J. Engel, and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations (Springer, New York, 2000).

    MATH  Google Scholar 

  24. J. Dieudonné, Foundations of Modern Analysis (Academic Press, New York-London, 1969).

    MATH  Google Scholar 

  25. B. Simon, Functional Integration and Quantum Physics (Academic Press, 1979).

  26. O. G. Smolyanov, A. G. Tokarev, and A. Truman, “Hamiltonian Feynman Path Integrals via the Chernoff Formula,” J. Math. Phys. 43(10), 5161–5171 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. O. G. Smolyanov, “Feynman Formulae for Evolutionary Equations,” in Trends in Stochastic Analysis (Cambridge Univ. Press, Cambridge, 2009).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remizov, I.D. Solution of a cauchy problem for a diffusion equation in a Hilbert space by a Feynman formula. Russ. J. Math. Phys. 19, 360–372 (2012). https://doi.org/10.1134/S1061920812030089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920812030089

Keywords

Navigation