Skip to main content
Log in

1.3-ns pulse, compact passively Q-switched microchip green laser by Nd:YAG/Cr4+:YAG composite crystal

  • Solid State and Liquid Lasers
  • Published:
Laser Physics

Abstract

In this article, a diode-end-pumped passively Q-switched extra-cavity frequency doubled micro-type green laser by Nd:YAG/Cr4+:YAG composite crystal was demonstrated. The dependence of the average out power, pulse width and pulse repetition rate on incident pump power were measured. Under the pump power of 14 W, the minimum pulse width of 1.3 ns with repetition rate of 68.0 kHz was obtained, corresponding single-pulse energy of 8.8 μJ and peak power of 6.7 kW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sh. B. Zhang, Q. J. Cui, B. Xiong, L. Guo, W. Hou, X. C. Lin, and J. M. Li, Laser Phys. Lett. 7, 707 (2010).

    Article  ADS  Google Scholar 

  2. Y. F. Lü, X. H. Zhang, R. Chen, J. Xia, J. F. Chen, and Z. T. Liu, Laser Phys. Lett. 7, 347 (2010).

    Article  ADS  Google Scholar 

  3. Y. F. Chen, T. M. Huang, and C. L. Wang, Electron. Lett. 33, 1880 (1997).

    Article  Google Scholar 

  4. J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, Appl. Opt. 40, 4303 (2001).

    Article  ADS  Google Scholar 

  5. J. Zheng, S. Zhao, and L. Chen, Opt. Eng. (Bellingham) 41, 2271 (2002).

    Article  ADS  Google Scholar 

  6. J. Dong, A. Shirakawa, and K. Ueda, Laser Phys. Lett. 4, 109 (2007).

    Article  ADS  Google Scholar 

  7. T. Dascalu and N. Pavel, Laser Phys. 19, 2090 (2009).

    Article  ADS  Google Scholar 

  8. H. Lei, M. Gong, Y. Ping, and L. Qiang, Laser Phys. Lett. 4, 572 (2007).

    Article  ADS  Google Scholar 

  9. F. Hajiesmaeilbaigi, H. Razzaghi, M. Mahdizadeh, and M. R. A. Moghaddam, Laser Phys. Lett. 4, 261 (2007).

    Article  ADS  Google Scholar 

  10. V. N. Petrovskiy, N. M. Prokopova, E. D. Protsenko, and V. M. Yermachenko, Laser Phys. Lett. 4, 191–195 (2007).

    Article  ADS  Google Scholar 

  11. Y. Wang, M. Gong, P. Yan, L. Huang, and D. Li, Laser Phys. Lett. 6, 788 (2009).

    Article  ADS  Google Scholar 

  12. Y. Wang, L. Huang, H. Zhang, X. Yan, Q. Liu, and M. Gong, Laser Phys. Lett. 5, 286 (2008).

    Article  MATH  ADS  Google Scholar 

  13. J. An, S. Zhao, G. Li, K. Yang, D. Li, J. Wang, M. Li, and Z. Zhuo, Laser Phys. Lett. 5, 193 (2008).

    Article  ADS  Google Scholar 

  14. B.-T. Zhang, J.-L. He, H.-T. Huang, C.-H. Zuo, K.-J. Yang, X.-L. Dong, J.-L. Xu, and S. Zhao, Laser Phys. Lett. 6, 22 (2009).

    Article  ADS  Google Scholar 

  15. W. Tian, C. Wang, G. Wang, S. Liu, and J. Liu, Laser Phys. Lett. 4, 196 (2007).

    Article  ADS  Google Scholar 

  16. R. J. Lan, M. D. Liao, H. H. Yu, Z. P. Wang, X. Y. Hou, H. J. Zhang, D. W. Hu, and J. Y. Wang, Laser Phys. Lett. 6, 268 (2009).

    Article  ADS  Google Scholar 

  17. Shiqun Li, Shouhuan Zhou, Pei Wang, Y. C. Chen and K. K. Lee, Opt. Lett. 18, 203 (1993).

    Article  ADS  Google Scholar 

  18. Shouhuan Zhou, K. K. Lee, Y. C. Chen, and Shiqun Li, Opt. Lett. 18, 511 (1993).

    Article  ADS  Google Scholar 

  19. Jun Dong, Peizhen Deng, Yutian Lu, Yinghua Zhang, Yupu Liu, Jun Xu, and Wei Chen, Opt. Lett. 25, 1101 (2000).

    Article  ADS  Google Scholar 

  20. J. J. Zayhowski and C. Dill III, Opt. Lett. 15, 1427 (1994).

    Article  ADS  Google Scholar 

  21. Y. Kalisky, L. Kravchik, and M. R. Kokta, Opt. Mater. 24, 607 (2004).

    Article  ADS  Google Scholar 

  22. R. Feldman, Y. Shimony, and Z. Burshtein, Opt. Mater. 24, 393 (2003).

    Article  ADS  Google Scholar 

  23. S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, Opt. Commun. 259, 816 (2006).

    Article  ADS  Google Scholar 

  24. X.-Q. Yang, H.-X. Wang, J.-L. He, B.-T. Zhang, and H.-T. Huang, Laser Phys. 19, 1964 (2009).

    Article  ADS  Google Scholar 

  25. M. Tsunekane, N. Taguchi, and H. Inaba, Appl. Opt. 37, 3290 (1998).

    Article  ADS  Google Scholar 

  26. C. Yin, L. Huang, M. Gong, P. Yan, Q. Liu, and F. He, Laser Phys. Lett. 4, 584 (2007).

    Article  ADS  Google Scholar 

  27. Zheng Quan and Zhao Ling, Acta Photon. Sinica 31, 60 (2002).

    Google Scholar 

  28. Y. F. Chen, IEEE Photon. Technol. Lett. 9, 1481 (1997).

    Article  ADS  Google Scholar 

  29. Jie Liu, Jimin Yang, and Jingliang He, Opt. Laser Technol. 36, 31 (2004).

    Article  MATH  ADS  Google Scholar 

  30. H-X. Wang, X-Q. Yang, and S. Zhao, Laser Phys. 19, 1824 (2009).

    Article  ADS  Google Scholar 

  31. J.-L. Li, D. Lin, L.-X. Zhong, K. Ueda, A. Shirakawa, M. Musha, and W.-B. Chen, Laser Phys. Lett. 6, 711 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. -Q. Yang.

Additional information

Original Text © Astro, Ltd., 2011.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X.Q., Wang, H.X., Yang, J.F. et al. 1.3-ns pulse, compact passively Q-switched microchip green laser by Nd:YAG/Cr4+:YAG composite crystal. Laser Phys. 21, 690–694 (2011). https://doi.org/10.1134/S1054660X11070322

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X11070322

Keywords

Navigation