Skip to main content
Log in

Long-distance electron tunneling in proteins: A new challenge for time-resolved spectroscopy

  • Papers
  • Published:
Laser Physics

Abstract

Long-distance electron tunneling is a fundamental process which is involved in energy generation in cells. The tunneling occurs between the metal centers in the respiratory enzymes, typically over distances up to 20 or 30 such distances, the tunneling time—i.e., the time during which an electron passes through the body of the protein molecule from one metal center to another—is of the order of 10 fs. Here the process of electron tunneling in proteins is reviewed, and a possibility of experimental observation of real-time electron tunneling in a single protein molecule is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Skulachev, Membrane Bioenergetics (Springer, Berlin, 1988).

    Google Scholar 

  2. D. G. Nicholls and S. J. Ferguson, Bioenergetics 3 (Elsevier Sci., San Diego, 2002).

    Google Scholar 

  3. D. DeVault and B. Chance, Biophys. J. 6, 825 (1966).

    Article  ADS  Google Scholar 

  4. D. DeVault, Quantum Mechanical Tunneling in Biological Systems (Cambridge Univ., Cambridge, 1984).

    Google Scholar 

  5. H. B. Gray and J. R. Winkler, Ann. Rev. Biochem. 65, 537 (1996).

    Article  Google Scholar 

  6. R. Langen, I. Chang, J. P. Germanas, J. H. Richards, J. R. Winkler, and H. B. Gray, Science 268, 1733 (1995).

    Article  ADS  Google Scholar 

  7. C. C. Moser, J. M. Keske, K. Warncke, R. S. Farid, and L. P. Dutton, Nature 355, 796 (1992).

    Article  ADS  Google Scholar 

  8. C. C. Page, C. C. Moser, X. Chen, and P. L. Dutton, Nature 402, 47 (1999).

    Article  ADS  Google Scholar 

  9. S. S. Skourtis and D. Beratan, Adv. Chem. Phys. 106, 377 (1999).

    Article  Google Scholar 

  10. R. A. Marcus and N. Sutin, Biochim. Biophys. Acta 811, 265 (1985).

    Google Scholar 

  11. M. Bixon and J. Jortner, Adv. Chem. Phys. 106, 35 (1999).

    Article  Google Scholar 

  12. A. A. Stuchebrukhov, Theor. Chem. Acc. 110, 291 (2003).

    Google Scholar 

  13. A. A. Stuchebrukhov, J. Theor. Comp. Chem. 2, 91 (2003).

    Article  Google Scholar 

  14. A. A. Stuchebrukhov, Adv. Chem. Phys. 118, 1 (2001).

    Article  Google Scholar 

  15. M. D. Newton, Chem. Rev. 767, 91 (1991).

    Google Scholar 

  16. E. S. Medvedev and A. A. Stuchebrukhov, Pur. Appl. Chem. 70, 2201 (1998).

    Article  Google Scholar 

  17. H. M. McConnel, J. Chem. Phys. 35, 508 (1961).

    Article  ADS  Google Scholar 

  18. S. Larsson, J. Am. Chem. Soc. 103, 4034 (1981).

    Article  Google Scholar 

  19. A. A. Stuchebrukhov and R. A. Marcus, J. Chem. Phys. 98, 8443 (1993).

    Article  ADS  Google Scholar 

  20. J. M. Lopez-Castillo, A. Filali-Mouhim, I. L. Plante, and J. P. Jay-Gerin, J. Phys. Chem. 99, 6864 (1995).

    Article  Google Scholar 

  21. A. Nitzan, J. Jortner, J. Wilkie, A. L. Burin, and M. A. Ratner, J. Phys. Chem. 104, 5661 (2000).

    Google Scholar 

  22. L. Y. Zhang, R. Murphy, and R. A. Friesner, J. Chem. Phys. 107, 450 (1997).

    Article  ADS  Google Scholar 

  23. C. Liang and M. D. Newton, J. Phys. Chem. 96, 2855 (1992).

    Article  Google Scholar 

  24. K. D. Jordan and M. N. Paddon-Row, J. Phys. Chem. 96, 1188 (1992).

    Article  Google Scholar 

  25. K. Kim, K. D. Jordan, and M. N. Paddon-Row, J. Phys. Chem. 98, 11053 (1994).

    Article  Google Scholar 

  26. R. Cave and M. D. Newton, Chem. Phys. Lett. 249, 15 (1996).

    Article  ADS  Google Scholar 

  27. R. Cave and M. D. Newton, J. Chem. Phys. 106, 9213 (1997).

    Article  ADS  Google Scholar 

  28. S. Larsson, J. Chem. Soc. Faraday Trans. 2, 1375 (1983).

    Google Scholar 

  29. P. Siddarth and R. A. Marcus, J. Phys. Chem. 94, 2985 (1993); J. Phys. Chem. 97, 2400 (1993).

    Article  Google Scholar 

  30. J. W. Evenson and M. Karplus, Science 262, 1247 (1993).

    Article  ADS  Google Scholar 

  31. M. Gruschus and A. Kuki, J. Phys. Chem. 97, 5581 (1993).

    Article  Google Scholar 

  32. J. J. Regan, S. M. Risser, D. N. Beratan, and J. N. Onuchic, J. Phys. Chem. 97, 13083 (1993).

    Article  Google Scholar 

  33. A. A. Stuchebrukhov, Chem. Phys. Lett. 225, 55 (1994).

    Article  ADS  Google Scholar 

  34. A. A. Stuchebrukhov, Chem. Phys. Lett. 265, 643 (1997).

    Article  ADS  Google Scholar 

  35. M. Ratner, J. Phys. Chem. 94, 4877 (1990).

    Article  Google Scholar 

  36. D. J. Katz and A. A. Stuchebrukhov, J. Chem. Phys. 109, 4960 (1998).

    Article  ADS  Google Scholar 

  37. I. Kurnikov and D. N. Beratan, J. Chem. Phys. 105, 9561 (1996).

    Article  ADS  Google Scholar 

  38. J. N. Gehlen, I. Daizadeh, A. A. Stuchebrukhov, and R. A. Marcus, Inorg. Chim. Acta 243, 271 (1996).

    Article  Google Scholar 

  39. J. N. Onuchic, D. N. Beratan, J. R. Winkler, and H. B. Gray, Science 258, 1740 (1992).

    Article  ADS  Google Scholar 

  40. I. Daizadeh, D. M. Medvedev, and A. A. Stuchebrukhov, Molec. Biol. Evol. 19, 406 (2002).

    Google Scholar 

  41. D. M. Medvedev, I. Daizadeh, and A. A. Stuchebrukhov, J. Am. Chem. Soc. 122, 6571 (2000).

    Article  Google Scholar 

  42. J. Kim and A. Stuchebrukhov, J. Phys. Chem. B 104, 8606 (2000).

    Article  Google Scholar 

  43. J. F. Cushing and S. Goldstein, Bohmian Mechanics and Quantum Theory: An Apprisal (Kluwer Academic, Dordtecht, Holland, 1996).

    Google Scholar 

  44. A. A. Stuchebrukhov, J. Chem. Phys. 104, 8424 (1996).

    Article  ADS  Google Scholar 

  45. A. A. Stuchebrukhov, J. Chem. Phys. 107, 6495 (1997).

    Article  ADS  Google Scholar 

  46. A. A. Stuchebrukhov, J. Chem. Phys. 108, 8499 (1998).

    Article  ADS  Google Scholar 

  47. J. Bardeen, Phys. Rev. Lett. 6, 57 (1961).

    Article  ADS  Google Scholar 

  48. A. A. Stuchebrukhov, J. Chem. Phys. 108, 8510 (1998).

    Article  ADS  Google Scholar 

  49. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (Macmillan, New York, 1982).

    Google Scholar 

  50. A. F. Voter and W. A. Goddard, Chem. Phys. 57, 253 (1981).

    Article  ADS  Google Scholar 

  51. M. D. Newton, J. Phys. Chem. 92, 3049 (1988).

    Article  Google Scholar 

  52. E. P. Bierwagen, T. R. Coley, and W. A. Goddard, Parallel Computing in Coputational Chemistry, ACS Symp. Ser., vol. 592, p. 84.

  53. M. D. Newton, K. Ohta, and E. Zhong, J. Phys. Chem. 95, 2317 (1991).

    Article  Google Scholar 

  54. A. A. Stuchebrukhov, J. Chem. Phys. 118, 7898 (2003).

    Article  ADS  Google Scholar 

  55. X. H. Zheng and A. A. Stuchebrukhov, J. Phys. Chem. B 107, 9579 (2003).

    Article  Google Scholar 

  56. Y. Georgievskii and A. A. Stuchebrukhov, J. Chem. Phys. 113, 10438 (2000).

    Article  ADS  Google Scholar 

  57. I. Daizadeh, E. S. Medvedev, and A. A. Stuchebrukhov, Proc. Natl. Acad. Sci. USA 94, 3703 (1997).

    Article  ADS  Google Scholar 

  58. I. Daizadeh, J. X. Guo, and A. Stuchebrukhov, J. Chem. Phys. 110, 8865 (1999).

    Article  ADS  Google Scholar 

  59. J. Wang and A. A. Stuchebrukhov, Int. J. Quant. Chem. 80, 591 (2000).

    Article  Google Scholar 

  60. N. E. Miller, M. C. Wander, and R. J. Cave, J. Phys. Chem. A 103, 1084 (1999).

    Article  Google Scholar 

  61. I. A. Balabin and J. N. Onuchic, Science 114, 114 (2000).

    Article  ADS  Google Scholar 

  62. E. S. Medvedev and A. A. Stuchebrukhov, J. Chem. Phys. 107, 3821 (1997).

    Article  ADS  Google Scholar 

  63. R. Landauer and T. Martin, Rev. Mod. Phys. 66, 217 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Stuchebrukhov.

Additional information

Original Russian Text © Astro, Ltd., 2010.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuchebrukhov, A.A. Long-distance electron tunneling in proteins: A new challenge for time-resolved spectroscopy. Laser Phys. 20, 125–138 (2010). https://doi.org/10.1134/S1054660X09170186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X09170186

Keywords

Navigation