Skip to main content
Log in

Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

This paper describes the development of a novel-phase resolved system based on swept-source optical-coherence tomography (SSOCT) for the ultrasensitive imaging and monitoring of gas microbubbles in aqueous media. The developed phase-stabilized SSOCT (PhS-SSOCT) system has an axial resolution of 10 μm, a phase sensitivity of 0.03 rad, an imaging depth of up to 6 mm in air, and a scanning speed of 20 kHz for a single A line. The performance of the sensing system was evaluated in water-containing gas microbubbles with a different diameter. The obtained results demonstrate that bubbles with a diameter greater than 10 μm could be detected by both structural imaging and phase response, whereas bubbles with diameters of less than 10 μm could be detected by the phase response of the SSOCT with a high sensitivity. The accuracy for the measurement of the diameter of gas microbubbles is limited to 10 μm in structural imaging and 0.01 μm in phase-sensitive monitoring. The results from this study indicate that PhS-SSOCT could be used to detect fast-moving microbubbles in aqueous solutions and ultimately could be applied for rapid assessment in biofluids (e.g., blood) and tissues (e.g., skin) in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. S. Neuman, News Physiol. Sci. 17, 77 (2002).

    Google Scholar 

  2. B. A. Hills and B. D. Butler, Undersea Biomed. Res. 8, 163 (1981).

    Google Scholar 

  3. R. S. Meltzer, P. W. Serruys, J. McGhie, et al., British Heart J. 44, 390 (1980).

    Article  Google Scholar 

  4. A. Bouakaz and N. de Jong, Ultrasound Med. Biol. 33, 187 (2007).

    Article  Google Scholar 

  5. R. Y. Nishi, in The Physiology and Medicine of Diving, Ed. by P. B. Bennett and D. Elliott (Saunders, London, 1993).

    Google Scholar 

  6. D. N. Walder, A. Evans, and H. V. Hempleman, Lancet 1, 897 (1968).

    Article  Google Scholar 

  7. R. G. Eckenhoff, C. S. Olstad, and G. Carrod, J. Appl. Physiol. 69, 914 (1990).

    Google Scholar 

  8. M. Malconian, P. B. Rock, J. Devine, et al., Aviat Space Environ. Med. 58, 679 (1987).

    Google Scholar 

  9. K. V. Larin, T. Akkin, R. O. Esenaliev, et al., Appl. Opt. 43, 3408 (2004).

    Article  ADS  Google Scholar 

  10. I. V. Larina, E. F. Carbajal, V. V. Tuchin, et al., Laser Phys. Lett. 5, 476 (2008).

    Article  Google Scholar 

  11. V. V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, Bellingham, WA, 2005).

    Google Scholar 

  12. M. Ghosn, V. V. Tuchin, and K. V. Larin, Invest. Ophthalmol. Visual Sci. 48, 2726 (2007).

    Article  Google Scholar 

  13. M. G. Ghosn, E. F. Carbajal, N. Befrui, et al., J. Biomed. Opt. 13, 010505(3) (2008).

  14. D. Huang, E. A. Swanson, C. P. Lin, et al., Science 254, 1178 (1991).

    Article  ADS  Google Scholar 

  15. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, et al., J. Biomed. Opt. 12, 051403 (2007).

    Google Scholar 

  16. D. Stifter, Appl. Phys. B: Lasers Opt. 88, 337 (2007).

    Article  Google Scholar 

  17. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, New York, 2002).

    Google Scholar 

  18. K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, Phys. Med. Biol. 48, 1371 (2003).

    Article  Google Scholar 

  19. K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, Diabetes Care 25, 2263 (2002).

    Article  Google Scholar 

  20. K. V. Larin, M. G. Ghosn, S. N. Ivers, et al., Laser Phys. Lett. 4, 312 (2007).

    Article  Google Scholar 

  21. B. Veksler, E. Kobzev, M. Bonesi, and I. Meglinski, Laser Phys. Lett. 5, 236 (2008).

    Article  Google Scholar 

  22. J. Lademann, A. Patzelt, M. Darvin, et al., Laser Phys. Lett. 5, 335 (2008).

    Article  Google Scholar 

  23. R. Huber, M. Wojtkowski, J. G. Fujimoto, et al., Opt. Express 13, 10523 (2005).

  24. Y. Verma, K. Divakar Rao, S. K. Mohanty, and P. K. Gupta, Laser Phys. Lett. 4, 686 (2007).

    Article  Google Scholar 

  25. B. J. Vakoc, S. H. Yun, J. F. de Boer, et al., Opt. Express 13, 5483 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Larin.

Additional information

Original Text © Astro, Ltd., 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manapuram, R.K., Manne, V.G.R. & Larin, K.V. Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles. Laser Phys. 18, 1080–1086 (2008). https://doi.org/10.1134/S1054660X08090144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X08090144

PACS numbers

Navigation