Skip to main content
Log in

Production of ultra-short high-power microwave pulses in Čerenkov backward-wave systems (Review)

  • Beams of Charged Particles and Their Applications
  • Published:
Laser Physics

Abstract

The article presents a review of works (mainly, of experimental ones) on production of subgigawatt and gigawatt microwave pulses of extremely short duration (5–7 RF periods) using backward-wave systems fed with nanosecond and subnanosecond high-current electron beams produced by compact accelerators. Theoretical approaches to the generation process (which is essentially non-steady-state) are briefly summarized. Using the effect of spatial accumulation of energy in a short running microwave pulse allows production of pulses with peak power notably higher then the driving electron beam power. Compact microwave sources developed for operation in the Ka-band and X-band are described. Special attention is given to the issue of high pulse repetition frequency operation of the sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Gaponov-Grekhov and M. I. Petelin, Vestn. Akad. Nauk SSSR 4, 11 (1979).

    ADS  Google Scholar 

  2. A. N. Didenko and Yu. G. Yushkov, Powerful Microwave Pulses of Nanosecond Duration (Energoatomizdat, Moscow, 1984) [in Russian].

    Google Scholar 

  3. M. V. Kuzelev, A. A. Rukhadze, and P. S. Strelkov, Plasma Relativistic Microwave Electronics, Ed. by A. A. Rukhadze (Bauman State Tech. Univ., Moscow, 2002) [in Russian].

    Google Scholar 

  4. D. I. Trubetskov and A. E. Khramov, Lectures on High-Frequency Electronics for Physicists (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  5. G. A. Mesyats, Pulsed Power Engineering and Electronics (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  6. J. Benford and J. Swegle, High-power Microwaves (Artech House, Norwood, 1992).

    Google Scholar 

  7. V. L. Granatstein and I. Alexeff, High-power Microwaves (Artech House, Norwood, 1987).

    Google Scholar 

  8. High-power Microwave Sources and Technology, Ed. by R. J. Barker and E. Schamiloglu (John Wiley and Sons, New York, 2001).

    Google Scholar 

  9. A. V. Gunin, A. I. Klimov, S. D. Korovin, et al., IEEE Trans. Plasma Sci. 26 (3), 326 (1998).

    Article  Google Scholar 

  10. S. A. Kitsanov, S. D. Korovin, I. K. Kurkan, et al., Pis’ma Zh. Tekh. Fiz. 29 (6), 87 (2003) [Tech. Phys. Lett. 29 (3), 259 (2003)].

    Google Scholar 

  11. F. J. Agee, IEEE Trans. Plasma Sci. 26 (3), 235 (1998).

    Google Scholar 

  12. J. Benford and G. Benford, IEEE Trans. Plasma Sci. 25 (2), 311 (1997).

    Article  Google Scholar 

  13. N. F. Kovalev, V. E. Nechaev, M. I. Petelin, and N. I. Zaitsev, IEEE Trans. Plasma Sci. 26 (3), 246 (1998).

    Article  Google Scholar 

  14. O. T. Loza and P. S. Strelkov, in Proceedings of International Workshop on High-Perfomance Materials Generation and Pulse Shortening, Edinburg, United Kingdom, 1997 (Edinburg, 1997), p. 103.

  15. G. A. Mesyats, in High Power Microwave Generation and Applications, Ed. by P. Caldirola, E. Sindoni, and C. Wharton (SIF, Bologna, 1992), p. 345.

    Google Scholar 

  16. S. D. Korovin, G. A. Mesyats, I. V. Pegel, et al., IEEE Trans. Plasma Sci. 28 (3), 485 (2000).

    Google Scholar 

  17. S. N. Vlasov, N. G. Kazakova, and E. V. Koposova, Zh. Tekh. Fiz. 68 (2), 82 (1998) [Tech. Phys. 43 (2), 209 (1998)].

    Google Scholar 

  18. N. S. Ginzburg, S. P. Kuznetsov, and T. N. Fedoseeva, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 21 (7), 1037 (1978).

    ADS  Google Scholar 

  19. B. P. Bezruchko, S. P. Kuznetsov, and D. I. Trubetskov, JETP Lett. 29 (3), 180 (1979).

    Google Scholar 

  20. N. S. Ginzburg, Pis’ma Zh. Tekh. Fiz. 14 (5), 440 (1988) [Sov. Phys. Tech. Lett. 14 (5), 197 (1988)].

    Google Scholar 

  21. V. G. Shpak, S. A. Shunailov, M. R. Ulmaskulov, et al., Pis’ma Zh. Tekh. Fiz. 22 (7), 65 (1996) [Tech. Phys. Lett. 22 (7), 628 (1996)].

    Google Scholar 

  22. N. S. Ginzburg, N. Yu. Novozhilova, I. V. Zotova, et al., Phys. Rev. E 60, 3297 (1999).

    ADS  Google Scholar 

  23. M. I. Yalandin, V. G. Shpak, S. A. Shunailov, et al., IEEE Trans. Plasma Sci. 28 (5), 1615 (2000).

    Article  Google Scholar 

  24. N. F. Kovalev, M. I. Petelin, M. D. Raizer, et al., Pis’ma Zh. Eksp. Teor. Fiz. 18 (4), 232 (1973) [JETP Lett. 18 (4), 138 (1973)].

    Google Scholar 

  25. Y. Carmel, J. Ivers, R. E. Krebel, and J. A. Nation, Phys. Rev. Lett. 33, 21 (1974).

    Article  Google Scholar 

  26. A. A. Elchaninov, S. D. Korovin, I. V. Pegel, et al., in Proceedings of 14th International Conference on High-Power Particle Beams, Albuquerque, USA, 2002 (Albuquerque, 2002), p. 279.

  27. I. V. Pegel, Russ. Phys. J. 39 (12), 1210 (1996).

    Google Scholar 

  28. A. A. Eltchaninov, S. D. Korovin, V. V. Rostov, et al., Laser Part. Beams 21, 187 (2003).

    Article  ADS  Google Scholar 

  29. A. A. Eltchaninov, S. D. Korovin, I. V. Pegel, and V. V. Rostov, Probl. Atom. Sci. Technol., Ser. 3, 4, 20 (2003).

    Google Scholar 

  30. A. A. Eltchaninov, S. D. Korovin, I. V. Pegel, et al., Izv. Vyssh. Uchebn. Zaved. Radiofiz. 46 (10), 874 (2003).

    Google Scholar 

  31. V. P. Tarakanov, User’s Manual for Code KARAT (Springfield, VA, 1994).

  32. N. S. Ginzburg, I. V. Zotova, and A. S. Sergeev, Tech. Phys. Lett. 25 (12), 930 (1999).

    Article  ADS  Google Scholar 

  33. N. S. Ginzburg, I. V. Zotova, and A. S. Sergeev, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 46 (10), 883 (2003).

    Google Scholar 

  34. I. K. Kurkan, V. V. Rostov, and E. M. Totmeninov, Pis’ma Zh. Tekh. Fiz. 24 (10), 43 (1998) [Tech. Phys. Lett. 24 (5), 388 (1998)].

    Google Scholar 

  35. A. A. Eltchaninov, S. D. Korovin, V. V. Rostov, et al., JETP Lett. 77 (6), 266 (2003).

    ADS  Google Scholar 

  36. A. I. Klimov, S. D. Korovin, V. V. Rostov, et al., IEEE Trans. Plasma Sci. 30 (3), 1120 (2002).

    Article  Google Scholar 

  37. D. G. Grishin, V. P. Gubanov, S. D. Korovin, et al., Pis’ma Zh. Tekh. Fiz. 28 (19), 24 (2002) [Tech. Phys. Lett. 28 (10), 806 (2002)].

    Google Scholar 

  38. S. D. Korovin, G. A. Mesyats, V. V. Rostov, et al., Tech. Phys. Lett. 30 (2), 117 (2004).

    Article  Google Scholar 

  39. A. V. Gunin, V. F. Landl, S. D. Korovin, et al., IEEE Trans. Plasma Sci. 28 (3), 537 (2000).

    Google Scholar 

  40. A. V. Gunin, S. D. Korovin, V. F. Landl, et al., Pis’ma Zh. Tekh. Fiz. 25 (22), 84 (1999) [Tech. Phys. Lett. 25 (11), 922 (1999)].

    Google Scholar 

  41. A. S. Eltchaninov, F. Ya. Zagulov, S. D. Korovin, et al., in Relativistic High-Frequency Electronics (IAP AS USSR, Gor’kii, 1981), p. 5.

    Google Scholar 

  42. S. D. Korovin, E. A. Litvinov, G. A. Mesyats, et al., Pis’ma Zh. Tekh. Fiz. 30 (19), 30 (2004) [Tech. Phys. Lett. 30 (10), 813 (2004)].

    Google Scholar 

  43. M. I. Yalandin, S. D. Korovin, E. A. Litvinov, et al., in Proceedings of 13th International Symposium on High Current Electronics, Tomsk, Russia, 2004 (Tomsk, 2004), p. 7.

  44. V. V. Rostov, A. A. Eltchaninov, S. D. Korovin, et al., in Proceedings of 13th International Symposium on High Current Electronics, Tomsk, Russia, 2004 (Tomsk, 2004), p. 250.

  45. G. A. Mesyats and M. I. Yalandin, Usp. Fiz. Nauk 175 (3), 225 (2005) [Phys. Usp. 48 (3), 211 (2005)].

    Google Scholar 

  46. S. D. Korovin, S. K. Lyubutin, G. A. Mesyats, et al., Pis’ma Zh. Tekh. Fiz. 30 (17), 23 (2004) [Tech. Phys. Lett. 30 (17), 719 (2004)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginzburg, N.S., Korovin, S.D., Pegel, I.V. et al. Production of ultra-short high-power microwave pulses in Čerenkov backward-wave systems (Review). Laser Phys. 16, 79–88 (2006). https://doi.org/10.1134/S1054660X06010075

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X06010075

Keywords

Navigation