Skip to main content
Log in

Forming Limit Diagram Generation from In-Plane Uniaxial and Notch Tensile Test with Local Strain Measurement through Digital Image Correlation

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Requirement of forming limit curve appears indispensible for property check during formable sheet metal development cycle and quality control of formable sheet metal at production shop floor. In the present work, left side of the forming limit curve (uniaxial tensile to plane strain tensile) is experimentally determined from in-plane uniaxial and notch tensile test with local strain measurement through digital image correlation technique. A novel procedure has been developed to generate forming limit curve with considerably reduced experimental effort. The proposed new procedure is based on a combination of in-plane uniaxial notch tensile test with local strain measurement and modeling. The forming limit curve generated using the new procedure has been compared with the standard procedure (Nakajima test) and a good correlation has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hosford, W.F. and Caddell, R.M., Metal Forming-Mechanics and Metallurgy, Prentice Hall, USA, 1993.

    Google Scholar 

  2. Hosford, W.F. and Duncan, J.L., Sheet Metal Forming: A Review, JOM, 1999, vol. 51, no. 11, pp. 39–44.

    Article  Google Scholar 

  3. Narayanasamy, R. and Narayanan, C.S., Forming, Fracture and Wrinkling Limit Diagram for if Steel Sheets of Different Thickness, Mater. Design., 2008, vol. 29, pp. 1467–1475.

    Article  Google Scholar 

  4. Kleemola, H.J. and Kumpulainen, J.O., Factors Influencing the Forming Limit Diagram. Part I: The Experimental Determination of the Forming Limits of Sheet Steel, J. Mech. Work Technol., 1980, vol. 3, pp. 289–302.

    Article  Google Scholar 

  5. Narayanasamy, R., Parthasarathi, N.L., Sathiya, Narayanan, C., Venugopal, T., and Pradhan, H.T., A Study on Fracture Behaviour of Three Different High Strength Low alloy steel sheets during formation with different Strain Ratios, Mater. Design., 2008, vol. 29, pp. 1868–1885.

    Article  Google Scholar 

  6. Paul, S.K., Theoretical Analysis of Strain- and Stress-Based Forming Limit Diagrams, J. Strain Analysis, 2013, vol. 48, no. 3, pp. 177–188.

    Article  Google Scholar 

  7. Marciniak, Z. and Kuczynski, K., Limit Strains in the Processes of Stretch-Forming Sheet Metal, Int. J. Mech. Sci., 1967, vol. 9, no. 9, pp. 609–620.

    Article  MATH  Google Scholar 

  8. Nakajima, K., Kikuma, T., and Asaku, K., Study on the Formability of Steel Sheet, Yawata Technical Report, 1968, vol. 264.

  9. Yoshida, K., Kuwabara, T., and Kuroda, M., Path-Dependence of the Forming Limit Stresses in a Sheet Metal, Int. J. Plasticity, 2007, vol. 23, pp. 361–384.

    Article  MATH  Google Scholar 

  10. Paul, S.K., Path Independent Limiting Criteria in Sheet Metal Forming, J. Manufactur. Process., 2015, vol. 20, no. 1, pp. 291–303.

    Article  Google Scholar 

  11. Panich, S., Barlat, F., Uthaisangsuk, V., Suranuntchai, S., and Jirathearanat, S., Experimental and Theoretical Formability Analysis Using Strain and Stress Based Forming Limit Diagram for Advanced High Strength Steels, Mater. Des., 2013, vol. 51, pp. 756–766.

    Article  Google Scholar 

  12. Arrieux, R., Bedrin, C., and Bovin, M., Determination of an Intrinsic Forming Limit Stress Diagram for Isotropic Sheets, in Proc. 12th IDDRG Congress, vol. 2, Santa Margherita, 1982, pp. 61–71.

  13. Stoughton, T.B., A General Forming Limit Criterion for Sheet Metal Forming, Int. J. Mech. Sci., 2000, vol. 42, pp. 1–27.

    Article  MATH  Google Scholar 

  14. Yoshida, K. and Kuwabara, T., Effect of Strain Hardening Behavior on Forming Limit Stresses of Steel Tube Subjected to Non-Proportional Loading Paths, Int. J. Plasticity, 2007, vol. 23, pp. 1260–1284.

    Article  MATH  Google Scholar 

  15. Keeler, S.P. and Backhofen, W.A., Plastic Instability and Fracture in Sheet Stretched over Rigid Punches, ASM Transactions Quarterly, 1964, vol. 56, pp. 25–48.

    Google Scholar 

  16. Goodwin, G.M., Application of Strain Analysis to Sheet Metal Forming in the Press Shop, SAE, 1968, paper No. 680093.

  17. Keeler, S.P. and Brazier, W.G., Relationship between Laboratory Material Characterization and Press Shop Formability, Microalloying 75 Proc, Washington, DC, USA, 1977, pp. 517–528.

  18. Raghavan, K.S., Van Kuren, R.C., and Darlington, H., Recent Progress in the Development of Forming Limit Curves for Automotive Sheet Steel, SAE, 1992, paper no. 920437.

  19. Singh, P.K., Sarkar, R.B., Raj, A., and Verma, R.K., Forming Limit Diagram Generation with Reduced Experiments and Modeling for Different Grades of Automotive Sheet Steel Using CrachLab, J. Strain Analysis, 2017, vol. 52, no. 5, pp. 298–309.

    Article  Google Scholar 

  20. Swift, H.W., Plastic Instability under Plane Stress, J. Mech. Phys. Solids, 1952, vol. 1, pp. 1–18.

    Article  ADS  Google Scholar 

  21. Hill, R., On Discontinuous Plastic States with Special Reference to Localized Necking in Thin Sheets, J. Mech. Phys. Solids, 1952, vol. 1, pp. 19–30.

    Article  ADS  MathSciNet  Google Scholar 

  22. Storen, S. and Rice, J.R., Localized Necking in Thin Sheets, J. Mech. Phys. Solids, 1975, vol. 23, pp. 421–441.

    Article  ADS  MATH  Google Scholar 

  23. Hutchinson, J.W., Neale, K.W., and Needleman, A., Sheet Necking. III: Strain-Rate Effects, in Mechanics of Sheet Metal Forming, Koistinen, D.P. and Wang, N.M., Eds., New York: Plenum, 1978, pp. 269–283.

    Chapter  Google Scholar 

  24. Hutchinson, J.W., Neale, K.W., and Needleman, A., Sheet Necking. II: Time-Independent Behavior, in Mechanics of Sheet Metal Forming, Koistinen, D.P. and Wang, N.M., Eds., New York: Plenum, 1978, pp. 111–126.

    Chapter  Google Scholar 

  25. Ghazanfari, A. and Assempour, A., Calibration of Forming Limit Diagrams Using a Modified Marciniak—Kuczynski Model and an Empirical Law, Mater. Design., 2012, vol. 34, pp. 185–191.

    Article  Google Scholar 

  26. Hariharan, K., Nguyen, N.T., Barlat, F., Lee, M.G., and Kim, J.H., A Pragmatic Approach to Accommodate In-Plane Anisotropy in Forming Limit Diagrams, Mech. Res. Commun., 2014, vol. 62, pp. 5–17.

    Article  Google Scholar 

  27. Hashemi, R., Ghazanfari, A., Abrinia, K., and Assempour, A., The Effect of the Imposed Boundary Rate on the Formability of Strain Rate Sensitive Sheets Using the M—K Method, J. Mater. Eng. Perform., 2013, vol. 22, no. 9, pp. 2522–2527.

    Article  Google Scholar 

  28. Hashemi, R., Madoliat, R., and Afshar, A., Prediction of Forming Limit Diagrams Using the Modified M—K Method in Hydroforming of Aluminum Tubes, Int. J. Mater. Forming, 2014, Thematic Iss.: Formability of Metallic Materials, pp. 1–7.

  29. Hashemi, R., Assempour, A., and Abad, E.M.K., Implementation of the Forming Limit Stress Diagram to Obtain Suitable Load Path in Tube Hydroforming Considering M—K Model, Mater. Design., 2009, vol. 30, no. 9, pp. 3545–3553.

    Article  Google Scholar 

  30. Paul, S.K., Prediction of Complete Forming Limit Diagram from Tensile Properties of Various Steel Sheets by a Non-linear Regression Based Approach, J. Manuf. Process., 2016, vol. 23, pp. 192–200.

    Article  Google Scholar 

  31. Chung, K., Ahn, K., Yoo, D.H., Chung, K.H., Seo, M.H., and Park, S.H., Formability of TWIP (Twinning Induced Plasticity) Automotive Sheets, Int. J. Plasticity, 2011, vol. 27, pp. 52–81.

    Article  Google Scholar 

  32. Paul, S.K., Manikandan, G., and Verma, R.K., Prediction of Entire Forming Limit Diagram from Simple Tensile Material Properties, J. Strain Analysis, 2013, vol. 48, no. 6, pp. 386–394.

    Article  Google Scholar 

  33. Lou, Y., Huh, H., and Lim, S., New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals, Int. J. Solids Struct., 2012, vol. 49, no. 25, pp. 3605–3615.

    Article  Google Scholar 

  34. Takuda, H., Mori, K., and Hatta, N., The Application of Some Criteria for Ductile Fracture to the Prediction of the Forming Limit of Sheet Metals, J. Mater. Process Tech., 1999, vol. 95, pp. 116–121.

    Article  Google Scholar 

  35. LaVision. https://doi.org/www.lavision.de/en/products/strainmaster/strainmaster-dic.php (Accessed July, 2018).

  36. Tardif, N. and Kyriakides, S., Determination of Anisotropy and Material Hardening for Aluminum Sheet Metal, Int. J. Solids Struct., 2012, vol. 49, no. 25, pp. 3496–3506.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Paul.

Additional information

Russian Text © The Author(s), 2018, published in Fizicheskaya Mezomekhanika, 2018, Vol. 21, No. 4, pp. 91–96.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S.K., Roy, S., Sivaprasad, S. et al. Forming Limit Diagram Generation from In-Plane Uniaxial and Notch Tensile Test with Local Strain Measurement through Digital Image Correlation. Phys Mesomech 22, 340–344 (2019). https://doi.org/10.1134/S1029959919040106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959919040106

Keywords

Navigation