Skip to main content
Log in

Influence of Surface Stresses on the Nanoplate Stiffness and Stability in the Kirsch Problem

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

A system of von Karman equations for a nanoplate has been generalized by introducing effective tangential and flexural stiffnesses and elastic moduli, with regard to surface elasticity and residual surface stresses on the outer surfaces. A modified Kirsch problem was solved for the case of an infinite nanoplate with a circular hole under plane stress in terms of effective elastic moduli. Two forms of local stability loss in this problem and the corresponding critical load for two different elastic characteristics of all plate surfaces were determined numerically and analytically. The dependence of the effective stiffnesses and elastic moduli on the plate thickness, and of the critical load on the hole radius (size effect) was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Panin, V.E., Egorushkin, V.E., and Panin, A.V., Physical Mesomechanics of a Deformed Solid as a Multilevel System. I. Physical Fundamentals of the Multilevel Approach, Phys. Mesomech., 2006, vol. 9, no. 3–4, pp. 9–20.

    Google Scholar 

  2. Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., and Wang, T., Surface Stress Effect in Mechanics of Nanostructured Materials, Acta Mech. Solid. Sinica, 2011, vol. 24, pp. 52–82.

    Article  Google Scholar 

  3. Eremeyev, V.A., Altenbach, H., and Morozov, N. F., The Influence of Surface Tension on the Effective Stiffness of Nanosize Plates, Dokl. Phys., 2009, vol. 54, no. 2, pp. 98–100.

    Article  ADS  MATH  Google Scholar 

  4. Eremeyev, V.A. and Morozov, N.F., The Effective Stiffness of a Nanoporous Rod, Dokl. Phys., 2010, vol. 55, no. 6, pp. 279–282.

    Article  ADS  MATH  Google Scholar 

  5. Eremeyev, V.A., On Effective Properties of Materials at the Nano- and Microscales Considering Surface Effects, Acta Mech., 2016, vol. 227, no. 1, pp. 29–42.

    Article  MathSciNet  MATH  Google Scholar 

  6. Goldstein, R.V., Gorodtsov, V.A., and Ustinov, K.B., Effect of Residual Surface Stress and Surface Elasticity on Deformation of Nanometer Spherical Inclusions in an Elastic Matrix, Phys. Mesomech., 2010, vol. 13, no. 5–6, pp. 318–328.

    Article  Google Scholar 

  7. Krivtsov, A.M. and Morozov, N.F., Anomalies in Mechanical Characteristics of Nanometer-Size Objects, Dokl. Phys., 2001, vol. 46, no. 11, pp. 825–827.

    Article  ADS  Google Scholar 

  8. Ivanova, E.A., Krivtsov, A.M., and Morozov, N.F., Peculiarities of the Bending-Stiffness Calculation for Nanocrystals, Dokl. Phys., 2002, vol. 47, no. 8, pp. 620–622.

    Article  ADS  Google Scholar 

  9. Berinskii, I.E., Krivtsov, A.M., and Kudarova, A.M., Bending Stiffness of a Graphene Sheet, Phys. Mesomech., 2014, vol. 7, no. 4, pp. 356–364.

    Article  Google Scholar 

  10. Miller, R.E. and Shenoy, V.B., Size-Dependent Elastic Properties of Nanosized Structural Elements, Nanotechnology, 2000, vol. 11, pp. 139–147.

    Article  ADS  Google Scholar 

  11. Shenoy, V.B., Atomic Calculations of Elastic Properties of Metallic FCC Crystal Surfaces, Phys. Rev. B, 2005, vol. 71, no. 9, pp. 94–104.

    Article  Google Scholar 

  12. Duan, H.L., Wang, J., and Karihaloo, B.L., Theory of Elasticity at the Nanoscale, Adv. Appl. Mech., 2009, no. 42, pp. 1–68.

    Google Scholar 

  13. Gibbs, J.W., The Scientific Papers of J. Willard Gibbs. V. 1, London: Longmans-Green, 1906.

    Google Scholar 

  14. Gurtin, M.E. and Murdoch, A.I., A Continuum Theory of Elastic Material Surfaces, Arch. Ration. Mech. Anal., 1975, vol. 57, no. 4, pp. 291–323.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gurtin, M.E. and Murdoch, A.I., Surface Stress in Solids, Int. J. Solids Struct., 1978, vol. 14, pp. 431–440.

    Article  MATH  Google Scholar 

  16. Lim, C.W. and He, L.H., Size-Dependent Nonlinear Response of Thin Elastic Films with Nano-Scale Thickness, Int. J. Mech. Sci., 2005, vol. 46, no. 11, pp. 1715–1726.

    Article  MATH  Google Scholar 

  17. Huang, D.W., Size-Dependent Response of Ultra-Thin Films with Surface Effects, Int. J. Solids Struct., 2008, vol. 45, no. 2, pp. 568–579.

    Article  MATH  Google Scholar 

  18. Mogilevskaya, S.G., Crouch, S.L., and Stolarsk, H.K., Multiple Interacting Circular Nano-Inhomogeneities with Surface/Interface Effects, J. Mech. Phys. Solids, 2008, vol. 56, pp. 2298–2327.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Tian, L. and Rajapakse, R.K.N.D., Analytical Solution for Size-Dependent Elastic Field of a Nanoscale Circular Inhomogeneity, Trans. ASME. J. Appl. Mech., 2007, vol. 74, no. 5, pp. 568–574.

    Article  ADS  MATH  Google Scholar 

  20. Tian, L. and Rajapakse, R.K.N.D., Elastic Field of an Isotropic Matrix with Nanoscale Elliptical Inhomogeneity, Int. J. Solids Struct., 2007, vol. 44, pp. 7988–8005.

    Article  MATH  Google Scholar 

  21. Grekov, M.A. and Yazovskaya, A.A., The Effect of Surface Elasticity and Residual Surface Stress in an Elastic Body with an Elliptic Nanohole, J. Appl. Math. Mech., 2014, vol. 78, no. 2, pp. 172–180.

    Article  MathSciNet  MATH  Google Scholar 

  22. Grekov, M.A. and Kostyrko, S.A., Surface Effects in an Elastic Solid with a Nanosized Surface Asperites, Int. J. Solids Struct., 2016, vol. 96, pp. 153–161.

    Article  Google Scholar 

  23. Altenbach, H., Nremeev, V.A., and Morozov, N.F., On Equations of the Linear Theory of Shells with Surface Stresses Taken into Account, Mech. Solids, 2010, vol. 45, no. 3, pp. 331–342.

    Article  ADS  Google Scholar 

  24. Ru, C.Q., A Strain-Consistent Plastic Plate Model with Surface Plasticity, Continuum Mech. Thermodyn., 2016, vol. 28, pp. 263–273.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Morozov, N.F., Tovstik, P.P., and Tovstik, T.P., Continuum Model of Multilayer Nanoplate Bending and Oscillation, Fiz. Mezomekh., 2016, vol. 19, no. 6, pp. 27–33.

    Google Scholar 

  26. Bauer, S.M., Kashtanova, S.V., Morozov, N.F., and Semenov, B.N., Stability of a Nanoscale-Thickness Plate Weakened by a Circular Hole, Dokl. Phys., 2014, vol. 59, no. 9, pp. 416–418.

    Article  ADS  Google Scholar 

  27. Kirsch, P.G., Die Theorie der Plastizitat und die Bedurfnisse der Festigkeitslehre, Zeitschrift des Vereines deutscher Ingenieure, 1898, vol. 42, pp. 797–807.

    Google Scholar 

  28. Ciarlet, P.G. and Rabier, P., Les Equations de von Karman: Lecture Notes in Mathematics. V. 826, Berlin: SpringerVerlag, 1980.

    Book  MATH  Google Scholar 

  29. Papkovich, P.F., Ship Structural Design, V. II, Eningrad: Sudpromgiz, 1941.

    Google Scholar 

  30. Povstenko, Yu.Z., Theoretical Investigation of Phenomena Caused by Heterogeneous Surface Tension in Solids, J. Mech. Phys. Solids, 1993, vol. 41, pp. 1499–1514.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Bochkarev, A.O. and Grekov, M.A., Local Instability of a Plate with a Circular Nanohole under lniaxial Tension, Dokl. Phys., 2014, vol. 59, no. 7, pp. 330–334.

    Article  ADS  Google Scholar 

  32. Bochkarev, A.O. and Grekov, M.A., On Symmetrical and Antisymmetrical Buckling of a Plate with Circular Nanohole under Uniaxial Tension, Appl. Math. Sci., 2015, vol. 9, no. 125, pp. 6241–6247.

    Google Scholar 

  33. Bochkarev, A.O. and Grekov, M.A., The Influence of the Surface Stress on the Local Buckling of a Plate with a Circular Nanohole, Proc. Int. Conf. Stabil. Control Proc. in Memory of V.I. Zubov, SCP 2015, 2015, pp. 367–370.

    Google Scholar 

  34. Mihlin, S.G., Variational Methods in Mathematical Physics: Int. Series of Monographs in Pure and Appl. Physics. Vol. 50, Pergamon Press, 1964.

    Google Scholar 

  35. Bochkarev, A.O. and Dal, Y.M., Local Stability of Notched Plastic Plates, Sov. Phys. Dokl., 1989, vol. 308, no. 2, pp. 312–315.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Bochkarev.

Additional information

Russian Text © The Author(s), 2017, published in Fizicheskaya Mezomekhanika, 2017, Vol. 20, No. 6, pp. 62–76.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochkarev, A.O., Grekov, M.A. Influence of Surface Stresses on the Nanoplate Stiffness and Stability in the Kirsch Problem. Phys Mesomech 22, 209–223 (2019). https://doi.org/10.1134/S1029959919030068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959919030068

Keywords

Navigation