Skip to main content
Log in

Micromechanical modeling approach to derive the yield surface for BCC and FCC steels using statistically informed microstructure models and nonlocal crystal plasticity

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

In order to describe irreversible deformation during metal forming processes, the yield surface is one of the most important criteria. Because of their simplicity and efficiency, analytical yield functions along with experimental guidelines for parameterization become increasingly important for engineering applications. However, the relationship between most of these models and microstructural features are still limited. Hence, we propose to use micromechanical modeling, which considers important microstructural features, as a part of the solution to this missing link. This study aims at the development of a micromechanical modeling strategy to calibrate material parameters for the advanced analytical initial yield function Barlat YLD 2004-18p. To accomplish this, the representative volume element is firstly created based on a method making use of the statistical description of microstructure morphology as input parameter. Such method couples particle simulations to radical Voronoi tessellations to generate realistic virtual microstructures as representative volume elements. Afterwards, a nonlocal crystal plasticity model is applied to describe the plastic deformation of the representative volume element by crystal plasticity finite element simulation. Subsequently, an algorithm to construct the yield surface based on the crystal plasticity finite element simulation is developed. The primary objectives of this proposed algorithm are to automatically capture and extract the yield loci under various loading conditions. Finally, a nonlinear least square optimization is applied to determine the material parameters of Barlat YLD 2004-18p initial yield function of representative volume element, mimicking generic properties of bcc and fcc steels from the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, H., Diehl, M., Roters, F., and Raabe, D., A Virtual Laboratory Using High Resolution Crystal Plasticity Simulations to Determine the Initial Yield Surface for Sheet Metal Forming Operations, Int. J. Plasticity, 2016, vol. 80, pp. 111–138.

    Article  Google Scholar 

  2. von Mises, R., Mechanik der Plastischen Formanderung von Kristallen, Z. Angew. Math. Mech., 1928, vol. 8, pp. 161–185.

    Article  MATH  Google Scholar 

  3. Hill, R., A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. R. Soc. A. Math. Phys. Eng. Sci., 1948, vol. 193, pp. 281–297.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Hosford, W.F., Limitations of Non-Quadratic Anisotropic Yield Criteria and Their Use in Analysis of Sheet Forming, Proc. of 15th Congress of Int. Deep Drawing Research Group, Materials Park: ASM Int., 1988, pp. 163–170.

    Google Scholar 

  5. Hill, R., Theoretical Plasticity of Textured Aggregates, Math. Proc. Cambridge Philos. Soc., 1979, vol. 85, no. 1, pp. 179–191.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Hosford, W.F., Comments on Anisotropic Yield Criteria, Int. J. Mech. Sci., 1985, vol. 27, no. 7-8, pp. 423–427.

    Article  Google Scholar 

  7. Barlat, F., and Lian, K., Plastic Behavior and Stretchability of Sheet Metals. Part I: A Yield Function for Crthotropic Sheets under Plane Stress Conditions, Int. J. Plasticity, 1989, vol. 5, no. 1, pp. 51–66.

    Article  Google Scholar 

  8. Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C., and Dick, R.E., Linear Transformation-Based Anisotropic Yield Functions, Int. J. Plasticity, 2005, vol. 21, no. 5, pp. 1009–1039.

    Article  MATH  Google Scholar 

  9. Karafillis, A.P. and Boyce, M.C., A General Anisotropic Anisotropic Yield Criterion Using Bounds and a Transformation Weighting Tensor, J. Mech. Phys. Solids, 1993, vol. 41, no. 12, pp. 1859–1886.

    Article  ADS  MATH  Google Scholar 

  10. Banabic, D., Kuwabara, T., Balan, T., Comsa, D.S., and Julean, D., Nonquadratic Yield Criterion for Orthotropic Sheet Metals under Plane Stress Conditions, Int. J. Mech. Sci., 2003, vol. 45, no. 5, pp. 797–811.

    Article  MATH  Google Scholar 

  11. Lademo, O.G., Hopperstad, O.S., and Langseth, M., An Evaluation of Yield Criteria and Flow Rules for Aluminum Alloys, Int. J. Plasticity, 1999, vol. 15, no. 2, pp. 191–208.

    Article  MATH  Google Scholar 

  12. Vajragupta, N., Wechsuwanmanee, P., Lian, J., Sharaf, M., Munstermann, S., Ma, A., Hartmaier, A., and Bleck, W., The Modelling Scheme to Evaluate the Influence of Microstructure Features on Microcrack Formation in DP-Steel: The Artificial Microstructure Model and Its Applications to Predict the Strain Hardening Behaviour, Comp. Mater. Sci., 2014, vol. 94, pp. 198–213.

    Article  Google Scholar 

  13. Regener, B., Krempaszky, C., Werner, E., and Stockinger, M., Modelling the Micromorphology of Heat Treated Ti6Al4V Forgings by Means of Spatial Tessellations Feasible for FEM Analyses of Microscale Residual Stresses, Comp. Mater. Sci., 2012, vol. 52, pp. 77–81.

    Article  Google Scholar 

  14. Wu, Y., Zhou, W., Wang, B., and Yang, F., Modeling and Characterization of Two-Phase Composites by Voronoi Diagram in the Laguerre Geometry Based on Random Close Packing of Spheres, Comp. Mater. Sci., 2010, vol. 47, no. 4, pp. 951–961.

    Article  Google Scholar 

  15. Okabe, A., Boots, B., Sugihara, K., and Chiu, S.N., Spatial Tessellations: Concepts and Applications ofVoronoi Diagrams, Chichester: John Wiley & Sons Ltd., 2000.

    Book  MATH  Google Scholar 

  16. Boeff, M., Micromechanical Modelling of Fatigue Crack Initiation and Growth: PhD Thesis, Bochum: Ruhr-Universitat Bochum, 2016.

    Google Scholar 

  17. Roters, F., Overview of Constitutive Laws Kinematics Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications, Acta Mater., 2010, vol. 58, pp. 1152–1211.

    Article  Google Scholar 

  18. Tikhovsky, I., Raabe, D., and Roters, F., Simulation of Earing of a 17% Cr Stainless Steel Considering Texture Gradients, Mat. Sci. Eng. A. Struct., 2008, vol. 488, pp. 482–490.

    Article  Google Scholar 

  19. Wang, Y., Orientation Dependence of Nanoindentation Pile-up Patterns and of Nanoindentation Microtextures in Copper Single Crystals, Acta Mater., 2004, vol. 52, pp. 2229–2238.

    Article  Google Scholar 

  20. Sachtleber, M., Zhao, Z., Raabe, D., Experimental Investigation of Plastic Grain Interaction, Mat. Sci. Eng. A, 2002, vol. 336, no. 1-2, pp. 81–87.

    Article  Google Scholar 

  21. Stoelken, J. and Evans, A., A Microbend Test Method for Measuring the Plasticity Length Scale, Acta Mater., 1998, vol. 46, pp. 5109–5115.

    Article  Google Scholar 

  22. Suzuki, K., Matsuki, Y., Masaki, K., Sato, M., and Kuroda, M., Tensile and Microbend Tests of Pure Aluminum Foils with Different Thicknesses, Mat. Sci. Eng. A, 2009, vol. 513, pp. 77–82.

    Article  Google Scholar 

  23. Hayashi, I., Sato, M., and Kuroda, M., Stain Hardening in Bent Copper Foils, J. Mech. Phys. Solids, 2011, vol. 59, pp. 1731–1751.

    Article  ADS  Google Scholar 

  24. Fleck, N.A., Muller, G.M., Ashby, M.F., and Hutchinson, J.W., Strain Gradient Plasticity: Theory and Experiment, Acta Metall. Mater., 1994, vol. 42, pp. 475–487.

    Article  Google Scholar 

  25. Nye, J.F., Some Geometrical Relations in Dislocated Crystals, Acta Metall., 1953, vol. 1, pp. 153–162.

    Article  Google Scholar 

  26. Tarjus, G., Schaaf, P., and Talbot, J., Random Sequential Addition: A Distribution Function Approach, JSP, 1991, vol. 63, pp. 167–202.

    ADS  MathSciNet  Google Scholar 

  27. Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 1995, vol. 117, no. 1, pp. 1–19.

    Article  ADS  MATH  Google Scholar 

  28. Plimpton, S., LAMMPS Molecular Dynamics Simulator. http://lammps.sandia.gov. Accessed: 2016-02-01.

    Google Scholar 

  29. Rycroft, C.H., Grest, G.S., Landry, J.W., and Bazant, M.Z., Analysis of Granular Flow in a Pebble-Bed Nuclear Reactor, Phys. Rev. E, 2006, vol. 74, p. 021306.

    Article  ADS  Google Scholar 

  30. Sandia National Laboratories “CUBIT 13.2”. https://cubit.sandia.gov/. Accessed: 2016-05-04.

  31. Ma, A. and Hartmaier, A., On the Influence of Isotropic and Kinematic Hardening Caused by Strain Gradients on the Deformation Behaviour of Polycrystals, Philos. Mag., 2014, vol. 94, no. 2, pp. 125–140.

    Article  ADS  Google Scholar 

  32. Newville, M., Ingargiola, A., Stensitzki, T., and Allen, D.B., LMFT: Non-Linear Least-Square Minimization and Curve-Fitting for Python, Zenodo, 2014.

    Google Scholar 

  33. Vitek, V., Mrovec, M., and Bassani, J.L., Influence of Non-Glide Stresses on Plastic Flow: From Atomistic to Continuum Modeling, Mater. Sci. Eng. A, 2004, vol. 365, no. 1, pp. 31–37.

    Article  Google Scholar 

  34. Koester, A., Ma, A., and Hartmaier, A., Atomistically Informed Crystal Plasticity Model for Body-Centered Cubic Iron, Acta Mater., 2012, vol. 60, pp. 3894–3901.

    Article  Google Scholar 

  35. ABAQUS User Subroutine Reference Manual Version 6.7. Dassault Systems: 2007.

  36. ABAQUS/Analysis User’s Manual. Version 6.12. ABAQUS Inc.

  37. Smit, R., Brekelmans, W., and Meijer, H., Prediction of the Mechanical Behavior of Nonlinear Heterogeneous Systems by Multi-Level Finite Element Modeling, Comput. Method. Appl. Mech. Eng., 1998, vol. 155, no. 12, pp. 181–192.

    Article  ADS  MATH  Google Scholar 

  38. Hosford, W.F., A Generalized Isotropic Yield Criterion, Int. J. Appl. Mech., 1972, vol. 39, no. 2, pp. 607–609.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vajragupta.

Additional information

Original Text © N. Vajragupta, S. Ahmed, M. Boeff, A. Ma, A. Hartmaier, 2017, published in Fizicheskaya Mezomekhanika, 2017, Vol. 20, No. 1, pp. 100–108.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vajragupta, N., Ahmed, S., Boeff, M. et al. Micromechanical modeling approach to derive the yield surface for BCC and FCC steels using statistically informed microstructure models and nonlocal crystal plasticity. Phys Mesomech 20, 343–352 (2017). https://doi.org/10.1134/S1029959917030109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959917030109

Keywords

Navigation