Skip to main content
Log in

Depth of origin of sputtered particles under the oblique incidence of a primary ion beam

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A physical model and mathematical calculations of the maximum partial depths of origin of sputtered particles versus mass, energy, and the angle of incidence of ions bombarding a one-component amorphous target are presented. Calculations reveal that the maximum depth of origin of secondary particles depends on the primary-ion incidence angle, which attains the highest value at angles of 30°–60° relative to the normal to the sample surface. When the primary beam and the target material have identical parameters, the maximum depths of origin of light secondary particles exceed those of heavy ones. Secondary particles exhibit the isotope effect. For light elements (Li, Be, and B), a heavier isotope has a larger maximum depth of origin than a lighter one. In the case of heavy elements (e.g., Mo), a lighter isotope has a greater maximum depth of origin than a heavier one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Betz and G. H. Wehner, Sputtering of Multicomponent Materials, in Sputtering by Particle Bombardment, Ed. by R. Behrisch (Springer, Berlin 1983; Mir, Moscow, 1986), Vol. 2, pp. 11–90.

  2. S. Hofmann, Surf. Interface Anal. 46, 654 (2014).

    Article  Google Scholar 

  3. V. I. Shulga and W. Eckstein, Nucl. Instrum. Methods Phys. Res., Sect. B 145, 492 (1998).

    Article  Google Scholar 

  4. K. Wittmaack and A. Mutzke, Nucl. Instrum. Methods Phys. Res., Sect. B 281, 37 (2012).

    Article  Google Scholar 

  5. A. N. Pustovit, Izv. Ross. Akad. Nauk, Ser. Fiz. 74 (2), 184 (2010).

    Google Scholar 

  6. W. Eckstein, Computer Simulation of Ion-Solid Interactions (Springer, Berlin, 1991; Mir, Moscow, 1995).

    Book  Google Scholar 

  7. J. P. Biersack and L. G. Haggmark, Nucl. Instrum. Methods Phys. Res. 174, 257 (1980).

    Article  Google Scholar 

  8. P. L. Grande, F. C. Zawislak, D. Fink, and M. Behar, Nucl. Instrum. Methods Phys. Res., Sect. B 61, 282 (1991).

    Article  Google Scholar 

  9. A. N. Pustovit, Poverkhnost’. Rentgen., Sinkhrotr. I Neitron. Issled., No. 8, 19 (2004).

    Google Scholar 

  10. R. P. Edwin, J. Phys. D: Appl. Phys. 6, 833 (1973).

    Article  Google Scholar 

  11. E. S. Mashkova, in Fundamental and Applied Aspects of Spraying Solids: Collection of Articles 1986–1987, Ed. by E. S. Mashkova (Mir, Moscow, 1989), p. 5 [in Russian].

  12. A. Barna, M. Menyhard, L. Kotis, Gy. J. Kovacs, et al., J. Appl. Phys. 98, 024901 (2005).

    Article  Google Scholar 

  13. R. D. Kolasinski, J. E. Polk, D. Goebel, and L. K. Johnson, Appl. Surf. Sci. 254, 2515 (2008).

    Article  Google Scholar 

  14. S. A. Eremin, Candidate’s Dissertation in Mathematics and Physics (Inst. Appl. Phys., Natl. Acad. Sci. of Ukraine, Sumy, 2010).

    Google Scholar 

  15. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1953; Nauka, Moscow, 1978).

    Google Scholar 

  16. Properties of Elements, Part 1: Physical Properties, Ed. by T. A. Andreeva, et al. (Metallurgiya, Moscow, 1976) [in Russian].

  17. P. Sigmund, Rev. Roum. Phys. 17 (17), 823 (1972).

    Google Scholar 

  18. K. Wittmaack, Surface and depth analysis based on sputtering, in Sputtering by Particle Bombardment, Ed. by R. Behrisch and K. Wittmaack (Springer, Berlin 1991; Mir, Moscow, 1998), vol. 3, pp. 161–256.

    Chapter  Google Scholar 

  19. M. H. Shapiro, E. Trovator, and T. A. Tombrello, Nucl. Instrum. Methods Phys. Res., Sect. B 180, 58 (2001).

    Article  Google Scholar 

  20. B. G. Svensson and B. Mohadjeri, Nucl. Instrum. Methods Phys. Res., Sect. B 55, 650 (1991).

    Article  Google Scholar 

  21. L. M. Baumel, M. R. Weller, R. A. Weller, and T. A. Tombrello, Nucl. Instrum. Methods Phys. Res., Sect. B 34, 427 (1988).

    Article  Google Scholar 

  22. P. Sigmund, Sputtering of solids by ion bombardment, in Sputtering by Particle Bombardment, Ed. by R. Behrisch (Springer, Berlin 1981; Mir, Moscow, 1984), Vol. 1, pp. 9–72.

    Google Scholar 

  23. Sputtering by Particle Bombardment. Experiments and Computer Calculations from Threshold to MeV Energies, Ed. by R. Behrisch and W. Eckstein (Springer, Berlin, 2007).

  24. V. I. Shulga, Nucl. Instrum. Methods Phys. Res., Sect. B 316, 76 (2013).

    Article  Google Scholar 

  25. V. I. Shulga, Nucl. Instrum. Methods Phys. Res., Sect. B 339, 8 (2014).

    Article  Google Scholar 

  26. V. I. Shulga, Nucl. Instrum. Methods Phys. Res., Sect. B 362, 57 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Pustovit.

Additional information

Original Russian Text © A.N. Pustovit, 2016, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2016, No. 6, pp. 12–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pustovit, A.N. Depth of origin of sputtered particles under the oblique incidence of a primary ion beam. J. Surf. Investig. 10, 579–587 (2016). https://doi.org/10.1134/S1027451016030320

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016030320

Keywords

Navigation