Skip to main content
Log in

Effect of double nuclear scattering on nuclear-magnetic interference in experiment with small-angle diffraction of polarized neutrons

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

An experiment on small-angle polarized-neutron diffraction by a two-dimensional spatially ordered array of nickel nanowires embedded in a porous anodic alumina matrix is discussed. The contributions of nonmagnetic (nuclear) structures and nuclear magnetic interference indicating the correlation between magnetic and nuclear structures are discussed. Magnetic scattering is two orders of magnitude smaller than nuclear scattering and, hence, turns out to be weakly distinguishable. The ordered magnetic composite nanostructure of a sample leads to strong interaction between the neutron wave and the structure itself, which, in turn, implies a twofold (miltiple scattering) nuclear scattering process. Nuclear magnetic interference scattering must be analyzed allowing for twofold scattering conditions, which substantially distorts the intensity distribution of the interference contribution of first-order diffraction peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Masuda and K. Fukuda, Science (Washington, D.C.) 268, 1466 (1995).

    Article  Google Scholar 

  2. S. Shingubara, J. Nanopart. Res. 5, 17 (2003).

    Article  Google Scholar 

  3. G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, J. Appl. Phys. 91, 3243 (2002).

    Article  Google Scholar 

  4. Y. Piao, H. Lim, J. Y. Chang, W.-Y. Lee, H. Kim, Electrochim. Acta 50, 2997 (2005).

    Article  Google Scholar 

  5. O. Jessensky, F. Müller, and U. Gösele, Appl. Phys. Lett. 72, 1173 (1998).

    Article  Google Scholar 

  6. K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gösele, Nano Lett. 2, 677 (2002).

    Article  Google Scholar 

  7. F. Li, L. Zhang, and R. M. Metzger, Chem. Mater. 10, 2470 (1998).

    Article  Google Scholar 

  8. H. Masuda, F. Hasegwa, and S. Ono, J. Electrochem. Soc. 144, 127 (1997).

    Article  Google Scholar 

  9. S. V. Grigoriev, N. A. Grigoryeva, A. V. Syromyatnikov, K. S. Napolskii, A. A. Eliseev, A. V. Lukashin, Yu. D. Tret’yakov, and H. Eckerlebe, JETP Lett. 85, 449 (2007).

    Article  Google Scholar 

  10. S. V. Grigoriev, A. V. Syromyatnikov, A. P. Chumakov, N. A. Grigoryeva, K. S. Napolskii, I. V. Roslyakov, A. A. Eliseev, A. V. Petukhov, and H. Eckerlebe, Phys. Rev. B 81, 125405 (2010).

    Article  Google Scholar 

  11. S. V. Grigoriev, N. A. Grigoryeva, A. V. Syromyatnikov, K. S. Napolskii, A. A. Eliseev, A. V. Lukashin, Yu. D. Tret’yakov, and H. Eckerlebe, JETP Lett. 85, 605 (2007).

    Article  Google Scholar 

  12. S. V. Grigoriev, N. A. Grigoryeva, K. S. Napolskii, A. P. Chumakov, A. A. Eliseev, I. V. Roslyakov, H. Eck- erlebe, and A. V. Syromyatnikov, JETP Lett. 94, 635 (2011).

    Article  Google Scholar 

  13. K. S. Napolskii, I. V. Roslyakov, A. A. Eliseev, A. V. Petukhov, D. V. Byelov, N. A. Grigoryeva, W. G. Bouwman, A. V. Lukashin, K. O. Kvashnina, A. P. Chumakov, and S. V. Grigoryev, J. Appl. Crystallogr. 43, 531 (2010).

    Article  Google Scholar 

  14. K. S. Napolskii, I. V. Roslyakov, A. A. Eliseev, D. V. Belov, A. V. Petukhov, N. A. Grigoryeva, W. G. Bouwman, A. V. Lukashin, A. P. Chumakov, and S. V. Grigoryev, J. Phys. Chem. C 115, 23726 (2011).

    Article  Google Scholar 

  15. K. Napolskii, I. Roslyakov, A. Romanchuk, O. Kapitanova, A. Mankevich, V. Lebedev, and A. Eliseev, J. Mater. Chem. 22, 11922 (2012).

    Article  Google Scholar 

  16. R. E. Benfield, D. Grandjean, J. C. Dore, H. Esfahanian, Z. Wu, M. Kroll, M. Geerkens, and G. Schmid, Faraday Discuss 125, 327 (2004).

    Article  Google Scholar 

  17. A. P. Chumakov, I. V. Roslyakov, K. S. Napolskii, A. A. Eliseev, A. V. Lukashin, H. Eckerlebe, W. G. Bouwman, D. V. Belov, A. I. Okorokov, and S. V. Grigoriev, Nanotechnol. Russia 8, 631 (2013).

    Article  Google Scholar 

  18. L. Sun, Y. Hao, C.-L. Chien, and P. C. Searson, IBM J. Res. Develop. 49, 79 (2005).

    Article  Google Scholar 

  19. S. V. Maleev, Phys. Usp. 45, 569 (2002).

    Article  Google Scholar 

  20. V. V. Runov, D. S. Il’in, M. K. Runova, and A. K. Radzhabov, JETP Lett. 95, 467 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Grigoriev.

Additional information

Original Russian Text © S.V. Grigoriev, A.P. Chumakov, N.A. Grigoryeva, H. Eckerlebe, I.V. Roslyakov, K.S. Napolskii, A.A. Eliseev, 2014, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2014, No. 10, pp. 53–63.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoriev, S.V., Chumakov, A.P., Grigoryeva, N.A. et al. Effect of double nuclear scattering on nuclear-magnetic interference in experiment with small-angle diffraction of polarized neutrons. J. Surf. Investig. 8, 1010–1019 (2014). https://doi.org/10.1134/S1027451014050280

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451014050280

Keywords

Navigation