Skip to main content
Log in

Estimation of the Absorption Effect on Light Scattering by Atmospheric Ice Crystals for Wavelengths Typical for Problems of Laser Sounding of the Atmosphere

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Results of analyzing the numerical calculation of light scattering matrices for ice crystals of arbitrary shape with allowance for absorption are presented. The matrices are obtained within the framework of the geometrical optics approximation. The effect of absorption on properties of light backscattering is estimated for problems of laser sounding of the atmosphere. The results demonstrate that taking into account the absorption when the wavelength is shifted inward the IR range leads to a decrease in the scattered radiation intensity. The effect of absorption for wavelengths of 0.355 and 0.532 μm does not exceed hundredths of a percent; for 1.064 μm, several percent; and for the near IR range, it can exceed tens of percent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: A global perspective,” Mon. Weather. Rev. 114 (6), 1167–1199 (1986).

    Article  ADS  Google Scholar 

  2. Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I. Single scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46 (1), 3–19 (1989).

    Article  ADS  Google Scholar 

  3. K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58 (15), 2103–2112 (2001).

    Article  ADS  Google Scholar 

  4. A. V. Konoshonkin, V. A. Shishko, N. V. Kustova, A. G. Borovoi, and D. N. Timofeev, “Problem of light scattering by atmospheric ice crystals,” Proc. SPIE—Int. Soc. Opt. Eng., 104662 (2017).

  5. K. S. Kunz and R. J. Luebbers, Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, FL, 1993).

    Google Scholar 

  6. A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1998).

    MATH  Google Scholar 

  7. H. Ishimoto, K. Masuda, Y. Mano, N. Orikasa, and A. Uchiyama, “Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds,” J. Quant. Spectrosc. Radiat. Transfer 113 (8), 632–643 (2012).

    Article  ADS  Google Scholar 

  8. P. Yang, L. Bi, G. Kattawar, and R. L. Panetta, “Optical properties of nonspherical atmospheric particles and relevant applications,” AAPP Atti della Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali 89, Suppl. 1 (2011). https://doi.org/10.1478/C1V89S1P012

  9. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).

    Article  ADS  Google Scholar 

  10. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transfer 106, 546–557 (2007).

    Article  ADS  Google Scholar 

  11. M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-appro-ximation code ADDA: Capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).

    Article  ADS  Google Scholar 

  12. J. Liu, L. Bi, P. Yang, and G. W. Kattawar, “Scattering of partially coherent electromagnetic beams by water droplets and ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 134, 74–84 (2014).

    Article  ADS  Google Scholar 

  13. D. Ori and S. Kneifel, “Assessing the uncertainties of the discrete dipole approximation in case of melting ice particles,” J. Quant. Spectrosc. Radiat. Transfer 217, 396–406 (2018).

    Article  ADS  Google Scholar 

  14. M. Arienti, M. Geier, X. Yang, J. Orcutt, J. Zenker, and S. D. Brooks, “An experimental and numerical study of the light scattering properties of ice crystals with black carbon inclusions,” J. Quant. Spectrosc. Radiat. Transfer 211, 50–63 (2018).

    Article  ADS  Google Scholar 

  15. I. Fenni, Z. S. Haddad, H. Roussel, and R. Mittra, “Efficient calculation of orientationally averaged scattering from complex-geometry ice particles,” in IEEE Intern. Geosc. and Remote Sensing Symposium (Texas, 2017), p. 4471–4474.

  16. Y. Grynko, Y. Shkuratov, and J. Forstner, “Light scattering by irregular particles much larger than the wavelength with wavelength-scale surface roughness,” Opt. Lett. 41 (15), 3491 (2016).

    Article  ADS  Google Scholar 

  17. A. G. Borovoi and I. A. Grishin, “Scattering matrices for large ice crystal particles,” J. Opt. Soc. Am. A 20, 2071–2080 (2003).

    Article  ADS  Google Scholar 

  18. A. Borovoi, A. Konoshonkin, and N. Kustova, “The physics optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 146, 181–189 (2014).

    Article  ADS  Google Scholar 

  19. L. Bi and P. Yang, “Physical-geometric optics hybrid methods for computing the scattering and absorption properties of ice crystals and dust aerosols,” Light Scattering Reviews 8 (Springer, Berlin; Heidelberg, 2013).

    Google Scholar 

  20. L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112 (9), 1492–1508 (2011).

    Article  ADS  Google Scholar 

  21. B. Sun, P. Yang, G. W. Kattawar, and X. Zhang, “Physical-geometric optics method for large size faceted particles,” Opt. Express 25 (20), 24044–24060 (2017).

    Article  ADS  Google Scholar 

  22. C. Zhou and P. Yang, “Backscattering peak of ice cloud particles,” Opt. Express 23 (9), 11995–12003 (2015).

    Article  ADS  Google Scholar 

  23. A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering by hexagonal ice crystals of cirrus clouds,” Opt. Lett. 38 (15), 2881–1884 (2013).

    Article  ADS  Google Scholar 

  24. A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Peculiarities of the depolarization ratio in lidar signals for randomly oriented ice crystals of cirrus clouds,” Opt. Atmos. Okeana 26 (5), 385–387 (2013).

    Google Scholar 

  25. A. Konoshonkin, Z. Wang, A. Borovoi, N. Kustova, D. Liu, and C. Xie, “Backscatter by azimuthally oriented ice crystals of cirrus clouds,” Opt. Express 24 (18), A1257–A1268 (2016).

    Article  ADS  Google Scholar 

  26. A. V. Konoshonkin, “Simulation of the scanning lidar signals for a cloud of monodisperse quasi-horizontal oriented particle,” Opt. Atmos. Okeana 29 (12), 1053–1060 (2016).

    Google Scholar 

  27. A. J. Baran, “On the scattering and absorption properties of cirrus cloud,” J. Quant. Spectrosc. Radiat. Transfer 89 (1-4), 17–36 (2004).

    Article  ADS  Google Scholar 

  28. M. Hess, P. Koepke, and I. Schult, “optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Math. Soc 79, 831–844 (1998).

    Article  Google Scholar 

  29. B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm,” J. Quant. Spectrosc. Radiat. Transfer 146, 123–139 (2014).

    Article  ADS  Google Scholar 

  30. Q. Cai and K.-N. Liou, “Polarized light scattering by hexagonal ice crystals: theory,” Appl. Opt. 21, 3569–3580 (1982).

    Article  ADS  Google Scholar 

  31. A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993).

    Article  ADS  Google Scholar 

  32. D. N. Timofeev, A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Backscattering matrices calculation for atmospheric ice crystals within the physical optics approximation with absorption effect,” Proc. SPIE—Int. Soc. Opt. Eng. 10833, 10833–174 (2018).

  33. A. H. Auer and D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27 (6), 919–926 (1970).

    Article  ADS  Google Scholar 

  34. J. Um, G. M. McFarquhar, Y. P. Hong, S.-S. Lee, C. H. Jung, R. P. Lawson, and Q. Mo, “Dimensions and aspect ratios of natural ice crystals,” Atmos. Chem. Phys. 15, 3933–3956 (2015).

    Article  ADS  Google Scholar 

  35. O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Crystal Clouds (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  36. D. N. Timofeev, A. V. Konoshonkin, and N. V. Kustova, “Modified beam-splitting 1 (MBS-1) algorithm for solving the problem of light scattering by nonconvex atmospheric ice particles,” Atmos. Oceanic Opt. 31 (6), 642–649 (2018).

    Article  Google Scholar 

  37. K. Boren and D. Khafmen, Light Scattering and Absorption by Small Particles (Mir, Moscow, 1986) [in Russian].

  38. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).

    Article  ADS  Google Scholar 

  39. D. L. Mitchell and W. P. Arnott, “A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II. Radiation,” J. Atmos. Sci. 51, 817–832 (1994).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (agreement no. 18-77-10 035) as related to solving the problem for ideal hexagonal ice crystals and, in part, by the Russian Foundation for Basic Research (project nos. 18-05-00568 and 18-55-53 046), and government budget.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. N. Timofeev or A. V. Konoshonkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeev, D.N., Konoshonkin, A.V., Kustova, N.V. et al. Estimation of the Absorption Effect on Light Scattering by Atmospheric Ice Crystals for Wavelengths Typical for Problems of Laser Sounding of the Atmosphere. Atmos Ocean Opt 32, 564–568 (2019). https://doi.org/10.1134/S1024856019050178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019050178

Keywords:

Navigation