Skip to main content
Log in

The technique for solving the problem of light backscattering by ice crystals of cirrus clouds by the physical optics method for a lidar with zenith scanning

  • Optics of Clusters, Aerosols, and Hydrosoles
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The technique for solving the problem of light backscattering by the physical optics method is considered. Recommendations on carrying out a preliminary estimation of the contribution of geometrical optics beams are given to reduce the list of beams that are necessary for the calculation by a factor of hundreds. The presented empirical estimating formulas and recommendations on choosing the optimum step of numerical integration make it possible to considerably reduce the resource intensity of the physical optics method for specified microphysical models of hexagonal crystalline particles. The obtained results of solving the light scattering problem are freely available in the form of a databank of Mueller matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Samokhvalov, B. V. Kaul’, S. V. Nasonov, I. V. Zhivotenyuk, and I. D. Bryukhanov, “Backscattering matrix of the mirror-reflecting upper-level cloud layers formed by horizontally oriented crystal particles,” Opt. Atmos. Okeana 25 (5), 403–411 (2012).

    Google Scholar 

  2. Yu. S. Balin, B. V. Kaul’, and G. P. Kokhanenko, “Observations of specularly reflective particles and layers in crystal clouds,” Opt. Atmos. Okeana 24 (4), 293–299 (2011).

    Google Scholar 

  3. B. V. Kaul’, S. N. Volkov, and I. V. Samokhvalov, “Studies of ice crystal clouds through lidar measurements of backscattering matrices,” Atmos. Ocean. Opt. 16 (4), 325–332 (2003).

    Google Scholar 

  4. A. Borovoi, Y. Balin, G. Kokhanenko, I. Penner, A. Konoshonkin, and N. Kustova, “Layers of quasihorizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar,” Opt. Express 22 (20), 24566–24573 (2014).

    Article  ADS  Google Scholar 

  5. K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58 (15), 2103–2112 (2001).

    Article  ADS  Google Scholar 

  6. H. M. Cho, P. Yang, G. W. Kattawar, S. L. Nasiri, Y. Hu, P. Minnis, C. Trepte, and D. Winker, “Depolarization ratio and attenuated backscatter for nine cloud types: Analyses based on collocated CALIPSO lidar and MODIS measurements,” Opt. Express 16 (6), 3931–3948 (2014).

    Article  ADS  Google Scholar 

  7. V. Noel, H. Chepfer, G. Ledanois, A. Delaval, and P. H. Flamant, “Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio,” Appl. Opt. 41 (21), 4245–4257 (2002).

    Article  ADS  Google Scholar 

  8. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: A global perspective,” Mon. Weather Rev. 114 (6), 1167–1199 (1986).

    Article  ADS  Google Scholar 

  9. C. Liu, R. L. Panetta, and P. Yang, “Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Radiat. Transfer 113 (13), 1728–1740 (2012).

    Article  ADS  Google Scholar 

  10. L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 µm,” J. Geophys. Res. 114, D00H08 (2009).

    Article  ADS  Google Scholar 

  11. Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I. Singlescattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46 (1), 3–19 (1989).

    Article  ADS  Google Scholar 

  12. A. V. Konoshonkin and A. G. Borovoi, “Specular scattering of light on cloud ice crystals and wavy water surface,” Atmos. Ocean. Opt. 26 (5), 438–443 (2013).

    Article  Google Scholar 

  13. A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Limits to applicability of geometrical optics approximation to light backscattering by quasihorizontally oriented hexagonal ice plates,” Atmos. Ocean. Opt. 28 (1), 74–81 (2015).

    Article  Google Scholar 

  14. A. Borovoi, A. Konoshonkin, and N. Kustova, “The physical-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 146, 181–189 (2014).

    Article  ADS  Google Scholar 

  15. A. V. Konoshonkin, N. V. Kustova, V. A. Osipov, A. G. Borovoi, K. Masuda, H. Ishimoto, and H. Okamoto, “Physical optics approximation for solving problems of light scattering on the ice crystal particles: Comparison of the vector formulations of diffraction,” Opt. Atmos. Okeana 28 (9), 830–843 (2015).

    Google Scholar 

  16. L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112 (9), 1492–508 (2011).

    Article  ADS  Google Scholar 

  17. A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Peculiarities of the depolarization ratio in lidar signals for randomly oriented ice crystals of cirrus clouds,” Opt. Atmos. Okeana 26 (5), 385–387 (2013).

    Google Scholar 

  18. A. Borovoi, A. Konoshonkin, N. Kustova, and H. Okamoto, “Backscattering Mueller matrix for quasihorizontally oriented ice plates of cirrus clouds: Application to CALIPSO signals,” Opt. Express 20 (27), 28222–28233 (2012).

    Article  ADS  Google Scholar 

  19. A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscatter ratios for arbitrary oriented hexagonal ice crystals of cirrus clouds,” Opt. Lett. 39 (19), 5788–5791 (2014).

    Article  ADS  Google Scholar 

  20. A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 1. Theoretical foundations of the algorithm,” Atmos. Ocean. Opt. 28 (5), 441–447 (2015).

    Article  Google Scholar 

  21. A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 2. Comparison with the ray tracing algorithm,” Atmos. Ocean. Opt. 28 (5), 448–454 (2015).

    Article  Google Scholar 

  22. D. L. Mitchell, “A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 1. Microphysics,” J. Atmos. Sci. 51 (6), 797–816 (1994).

    Article  ADS  Google Scholar 

  23. A. H. Auer and D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27 (6), 919–926 (1970).

    Article  ADS  Google Scholar 

  24. K. Sato and H. Okamoto, “Characterization of Z(e) and LDR of nonspherical and inhomogeneous ice particles for 95-GHz cloud radar: Its implication to microphysical retrievals.” J. Geophys. Res. 111, D22213 (2006).

    Article  ADS  Google Scholar 

  25. A. J. Heymsfield and L. M. Miloshevich, “Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles,” J. Atmos. Sci. 60 (7), 936–956 (2003).

    Article  ADS  Google Scholar 

  26. A. J. Heymsfield, A. Bansemer, P. R. Field, S. L. Durden, J. Stith, J. E. Dye, and W. Hall, “Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns,” J. Atmos. Sci. 59 (24), 3457–3491 (2002).

    Article  ADS  Google Scholar 

  27. I. V. Samokhvalov, S. V. Nasonov, I. D. Bryukhanov, A.G. Borovoi, B. V. Kaul’, N. V. Kustova, and A. V. Konoshonkin, “Analysis of the backscattering phase matrices of cirrus with anomalous reflection,” Izv. Vuzov, Fiz, No. 8/3, 281–283 (2013).

    Google Scholar 

  28. B. V. Kaul’ and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 1. Orientation at gravitational sedimentation,” Atmos. Ocean. Opt. 18 (11), 866–870 (2005).

    Google Scholar 

  29. B. V. Kaul’ and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 2. Azimuth orientation,” Atmos. Ocean. Opt. 19 (1), 39–42 (2006).

    Google Scholar 

  30. B. V. Kaul’ and I. V. Samokhvalov, “Physical factors determining the particle spatial orientation in ice clouds,” Atmos. Ocean. Opt. 21 (1), 20–26 (2008).

    Google Scholar 

  31. A. Konoshonkin, N. Kustova, and A. Borovoi, “Beamsplitting code for light scattering by ice crystal particles within geometric-optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 164, 175–183 (2015).

    Article  ADS  Google Scholar 

  32. A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering reciprocity for large particles,” Opt. Lett. 38 (9), 1485–1487 (2013).

    Article  ADS  Google Scholar 

  33. A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering by hexagonal ice crystals of cirrus clouds,” Opt. Lett. 38 (15), 2881–1884 (2013).

    Article  ADS  Google Scholar 

  34. A. Borovoi, N. Kustova, and A. Konoshonkin, “Interference phenomena at backscattering by ice crystals of cirrus clouds,” Opt. Exp. 23 (19), 24557–24571 (2015).

    Article  ADS  Google Scholar 

  35. ftp://ftpiaoru/pub/GWDT/Physical_optics/Backsca ttering/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Konoshonkin.

Additional information

Original Russian Text © A.V. Konoshonkin, N.V. Kustova, V.A. Shishko, A.G. Borovoi, 2016, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konoshonkin, A.V., Kustova, N.V., Shishko, V.A. et al. The technique for solving the problem of light backscattering by ice crystals of cirrus clouds by the physical optics method for a lidar with zenith scanning. Atmos Ocean Opt 29, 252–262 (2016). https://doi.org/10.1134/S1024856016030088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856016030088

Keywords

Navigation