Skip to main content
Log in

Planar sensors for determination of polyoxyethylated compounds

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

For determination of nonionic surface-active substances (NSAS), in particular, polyoxyethylated nonylphenols, in aqueous solutions, the planar sensors are developed based on various carbon materials (graphite, carbon nanotubes). The effect of the nature and concentration of electroactive compounds (EAC), carbonaceous materials, plasticizers on the electroanalytical and performance characteristics of planar NSAS sensors is observed. It is shown that the planar electrodes can be used in determination of individual homologues of polyoxyethylated nonylphenols in the concentration interval from 1 × 10–5 to 1 × 10–2 М at pH 4–10 in model solutions, in small-volume samples, for determination of the content of surfactants in technological preparations, domestic chemistry products, and also in environmental monitoring of natural waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, M., Li, Y.-T., Li, D.-W., and Long, Y.T., Recent developments and applications of screen-printed electrodes in environmental assays - a review, Anal. Chim. Acta, 2012, vol. 734, p. 31.

    Article  CAS  Google Scholar 

  2. Alonso-Lomillo, M.A., Dominguez-Renedo, O., and Arcos-Martinez, M.J., Screen-printed biosensors in microbiology; a review, Talanta, 2010, vol. 82, no. 5, p. 1629.

    Article  CAS  Google Scholar 

  3. Honeychurch, K.C. and Hart, J.P., Screen-printed electrochemical sensors for monitoring metal pollutants, TrAC, Trends Anal. Chem., 2003, vol. 22, no. 7, p. 456.

    Article  CAS  Google Scholar 

  4. Gornall, D.D., Collyer, S.D., and Higson, S.P.J., Investigations into the use of screen-printed carbon electrodes as templates for electrochemical sensors and sonochemically fabricated microelectrode arrays, Sens. Actuators, 2009, vol. 141, no. 2, p. 581.

    Article  CAS  Google Scholar 

  5. Wang, J., Tian, B., Nascimento, V.B., and Agnes, L., Performance of screen-printed carbon electrodes fabricated from different carbon inks, Electrochim. Acta, 1998, vol. 43, no. 23, p. 3459.

    Article  CAS  Google Scholar 

  6. Trojanowicz, M., Impact of nanotechnology on design of advanced screen-printed electrodes for different analytical applications, TrAC, Trends Anal. Chem., 2016, vol. 84.

    Google Scholar 

  7. Frag, E.Y.Z., Mohamed, G.G., and El-Sayed, W.G., Potentiometric determination of antihistaminic diphenhydramine hydrochloride in pharmaceutical preparations and biological fluids using screen-printed electrode, Bioelectrochemistry, 2011, vol. 82, no. 2, p. 79.

    Article  CAS  Google Scholar 

  8. Veltsistas, P.G., Prodromidis, M.I., and Efstathiou, C.E., All-solid-state potentiometric sensors for ascorbic acid by using a screen-printed compatible solid contact, Anal. Chim. Acta, 2004, vol. 502, no. 1, p. 15.

    Article  CAS  Google Scholar 

  9. Mohamed, G.G., Nour El-Dien, F.A., Frag, E.Y.Z., and Mohamed, M.E.-B, In situ modified screen printed and carbon paste ion selective electrodes for potentiometric determination of naphazoline hydrochloride in its formulation, J. Pharm. Anal., 2013, vol. 3, no. 5, p. 367.

    Article  CAS  Google Scholar 

  10. Khaled, E., Hassan, H.N.A., Mohamed, G.G., Ragab, F.A., and Seleim, A.E.A., Disposable potentiometric sensors for monitoring cholinesterase activity, Talanta, 2010, vol. 83, no. 2, p. 357.

    Article  CAS  Google Scholar 

  11. Brainina, Kh.Z., Alyoshina, L.V., Gerasimova, E.L., Kazakov, Ya.E., Ivanova, A.V., Beykin, Ya.B., Belyaeva, S.V., Usatova, T.I., and Khodos, M.Ya., New electrochemical method of determining blood and blood fractions antioxidant activity, Electroanalysis, 2009, vol. 21, nos. 3-5, p. 618.

    Article  CAS  Google Scholar 

  12. Laczka, O., Skillman, L., Ditcham, W.G., Hamdorf, B., Wong, D.K.Y., Bergquist, P., and Sunna, A., Application of an ELISA-type screen printed electrode based potentiometric assay to the detection of Cryptosporidium Parvum Oocysts, J. Microbiol. Methods, 2013, vol. 95, no. 2, p. 182.

    Article  CAS  Google Scholar 

  13. Mohamed, G.G., Ali, T.A., El-Shahat, M.F., Al-Sabagh, A.M., Migahed, M.A., and Khaled, E., Potentiometric determination of cetylpyridinium chloride using a new type of screen-printed ion selective electrodes, Anal. Chim. Acta, 2010, vol. 673, p. 79.

    Article  CAS  Google Scholar 

  14. Khaled, E., Mohamed, G.G., and Awad, T., Disposal screen-printed carbon paste electrodes for the potentiometric titration of surfactants, Sens. Actuators, 2008, vol. 135, p. 74.

    Article  CAS  Google Scholar 

  15. Mohamed, G.G., Ali, T.A., El-Shahat, M.F., Migahed, M.A., and Al-Sabagh, A.M., Novel screenprinted electrode for the determination of dodecyltrimethylammonium bromide in water samples, Drug Test. Anal., 2012, vol. 4, no. 12, p. 1009.

    Article  CAS  Google Scholar 

  16. Chernyshov, D.V., Khrenova, M.G., Pletnev, I.V., and Shvedene, N.V., Screen-printed ion-selective electrodes covered with membranes containing ionic liquids, Mendeleev Commun., 2008, vol. 18, no. 2, p. 88.

    Article  CAS  Google Scholar 

  17. Makarova, N.M. and Kulapina, E.G., Planar electrodes based on carbon nanotubes for the potentiometric determination of homologous sodium alkyl sulfates, J. Anal. Chem., 2015, vol. 70, p. 879.

    Article  CAS  Google Scholar 

  18. Makarova, N.M and Kulapina, E.G., Planar potentiometric sensors based on carbon materials for determination of sodium dodecyl sulfate, Russ. J. Electrochem., 2015, vol. 51, p. 672.

    Article  CAS  Google Scholar 

  19. Kulapina, E.G., Chernova, R.K., and Kulapin, A.I., Potentsiometricheskie sensory dlya opredeleniya sinteticheskikh poverkhnostno-aktivnykh veshchestv (Potentiometric Sensors for Determination of Synthetic Surfactants), Saratov: Nauchnaya kniga, 2008.

    Google Scholar 

  20. Buck, R.P. and Lindner, E., Recommendations for nomenclature of ion-selective electrodes, Pure Appl. Chem., 1994, vol. 66, no. 12, p. 2527.

    Article  CAS  Google Scholar 

  21. Morf, V., Printsipy raboty ionselektivnykh elektrodov i membrannyi transport (Principles of Functioning of Ion Selective Electrodes and Membrane Transport), Moscow: Mir, 1985.

    Google Scholar 

  22. Kulapina, E.G., Chernova, R.K., Apukhtina, L.V., Mitrokhina, S.A., and Materova, E.A., Electroanalytical, dynamic, and transport properties of nonionic surfactant-selective membranes, J. Anal. Chem., 2000, vol. 55, no. 11, p. 1034.

    Article  CAS  Google Scholar 

  23. Kulapin, A.I., Mikhailova, A.M., and Kulapina, E.G., Stabilizing potential of solid-contact sensors selective towards surface-active substances, Russ. J. Electrochem., 2003, vol. 39, p. 585.

    Article  CAS  Google Scholar 

  24. Lange, K.R., Poverkhnostno-aktivnye veshchestva. Sintez, svoistva, analiz, primenenie (Surfactants: Synthesis, Properties, Analysis, Application), Zaichenko, L.P., Ed., St. Petersburg: Professiya, 2007.

  25. Umezawa, Y., Buhlmann, P., Umezawa, K., Tohda, K., and Amemiya, S., Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations, Pure Appl. Chem., 2000, vol. 72, no. 10, p. 1851.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Makarova.

Additional information

Original Russian Text © N.M. Makarova, E.G. Kulapina, 2017, published in Elektrokhimiya, 2017, Vol. 53, No. 11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarova, N.M., Kulapina, E.G. Planar sensors for determination of polyoxyethylated compounds. Russ J Electrochem 53, 1266–1273 (2017). https://doi.org/10.1134/S1023193517110088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517110088

Keywords

Navigation