Skip to main content
Log in

Electric mass transport through homogeneous and surface-modified heterogeneous ion-exchange membranes at a rotating membrane disk

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Polarization characteristics of the homogeneous MF-4SK perfluorinated sulfonated cation-exchange membrane and the heterogeneous MK-40 sulfonic acid membrane with its surface modified by a homogeneous film of Nafion are studied at a rotating membrane disk in 0.1 and 0.001 M sodium chloride solutions. Partial current-voltage curves (CVC) are obtained for sodium and hydrogen ions, and limiting current densities in the electromembrane systems (EMS) under study are calculated as a function of the rotation rate of the membrane disk. Contribution from different mechanisms (electrodiffusion, electroconvection, dissociation of water, and the effect of the limiting-current exaltation) to the total ion flow is estimated experimentally and theoretically under conditions that the diffusion layer in the EMS has stabilized in thickness. It is established that surface modification of the heterogeneous MK-40 membrane with a 7 µm layer of a modifying agent almost completely eliminates the dissociation of water molecules, and the properties of the heterogeneous MK-40 membrane approximate those of the homogeneous Nafion membrane. From IR spectra and potentiometric titration curves of the MK-40 and MF-4SK membranes, it is shown that the acidity of the sulfonate groups in these membranes is nearly identical, but a difference in the dissociation rate of water at these membranes is determined by a different character of charge-density distribution and potential near the membrane-solution interphase boundary. By means of the theory of the overlimiting state in EMS, the internal parameters of the systems under investigation are calculated: distribution of space-charge density and electric-field potential in the diffusion layer and in the membrane. Partial CVC are calculated for H+ ions for the space-charge region in the phase of the MF-4SK and MK-40/Nafion ion-exchange membranes. Partial CVC with similar characteristics are compared for the heterogeneous monopolar MK-40 and the bipolar MB-2 membranes, which contain sulfonate groups. It is concluded that the membrane surface layer, where the space charge is localized, plays a dominant role in speeding up the dissociation of water in EMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karnik, B.S., Simon, H.R., Chen, K.C., and Jaglowski, D.R., J. Membr. Sci., 2005, vol. 263, p. 1.

    Article  Google Scholar 

  2. Nunes, S.P., and Peinemann, K.-V., Eds., Membrane Technology in the Chemical Industry, Weinheim: Wiley-VCH, 2001.

    Google Scholar 

  3. Zabolotskii, V.I. and Nikonenko, V.V., Perenos ionov v membranakh (Ion Transport in Membranes), Moscow: Nauka, 1996.

    Google Scholar 

  4. Alberti, G. and Casciola, M., Annu. Rev. Mater. Res., 2003, vol. 33, p. 129.

    Article  CAS  Google Scholar 

  5. Strathmann, H., Ion-Exchange Separation Processes, Amsterdam: Elsevier, 2004.

    Google Scholar 

  6. van Rijn, C.J.M., Nano and Micro Engineered Membrane Technology, Amsterdam: Elsevier, 2004.

    Google Scholar 

  7. Sourirajan, S., Ed., Reverse Osmosis and Synthetic Membranes, Ottawa: National Research Council of Canada, 1977.

    Google Scholar 

  8. Sata, T., J. Membr. Sci., 2000, vol. 167, p. 1.

    Article  CAS  Google Scholar 

  9. Tanaka, Y. and Seno, M., J. Membr. Sci., 1981, vol. 8, p. 115.

    Article  CAS  Google Scholar 

  10. Peregonchaya, O.V., Kotov, V.V., Sokolova, S.A., Kotova, D.L., and Kuznetsova, I.V., Zh. Fiz. Khim., 2004, vol. 78, p. 1289 [Russ. J. Phys. Chem. (Engl. Transl.), 2004, vol. 78, pp. 1125–1129].

    CAS  Google Scholar 

  11. Kotov, V.V., Peregonchaya, O.V., Tkachenko, S.V., and Nikulin, S.S., Sorbts. khromatograf. prots., 2002, vol. 2, p. 54.

    Google Scholar 

  12. Lopatkova, G.Yu., Volodina, E.I., Pis’menskaya, N.D., Fedotov, Yu.A., Cot, D., and Nikonenko, V.V., Elektrokhimiya, 2006, vol. 42, p. 942 [Russ. J. Electrochem. (Engl. Transl.), 2006, vol. 42, pp. 847–854].

    Google Scholar 

  13. Rozire, J., and Jones, D.J., Annu. Rev. Mater. Res., 2003, vol. 33, p. 503.

    Article  Google Scholar 

  14. Yaroslavtsev, A.B., Nikonenko, V.V., and Zabolostskii, V.I., Usp. Khim., 2003, vol. 72, p. 438 [Russ. Chem. Rev. (Engl. Transl.), 2003, vol. 72, pp. 393–421].

    Google Scholar 

  15. Novikova, S.A., Volodina, E.I., Pis’menskaya, N.D., Veresov, A.G., Stenina, I.A., and Yaroslavtsev, A.B., Elektrokhimiya, 2005, vol. 41, p. 1205 [Russ. J. Electrochem. (Engl. Transl.), 2005, vol. 41, pp. 1070–1076].

    Google Scholar 

  16. Alberti, G., Casciola, M., Donnadio, A., Narducci, R., Pica, M., and Sganappa, M., Desalination, 2006, vol. 199, p. 280.

    Article  CAS  Google Scholar 

  17. Kima, Y.-T., Kima, K.-H., Songa, M.-K., and Rhee, H.-W., Curr. Appl. Phys., 2006, vol. 6, p. 612.

    Article  Google Scholar 

  18. Zabolotskii, V.I., Shel’deshov, N.V., and Sharafan, M.V., Elektrokhimiya, 2006, vol. 42, p. 1484 [Russ. J. Electrochem. (Engl. Transl.), 2006, vol. 42, pp. 1345–1351].

    Google Scholar 

  19. Polyanskii, N.G., Gorbunov, G.V., and Polyanskaya, N.L., Metody issledovaniya ionitov (Methods for Studying Ion-Exchange Resins), Moscow: Khimiya, 1976.

    Google Scholar 

  20. Berezina, N.P., Kononenko, N.A., Dvorkina, G.A., and Shel’deshov, N.V., Fiziko-khimicheskie svoistva ionoobmennykh materialov (Physicochemical Properties of Ion-Exchange Materials), Krasnodar: Kuban. Gos. Univ., 1999.

    Google Scholar 

  21. Zabolotskii, V.I., Lebedev, K.A., and Lovtsov, E.G., Elektrokhimiya, 2006, vol. 42, p. 931 [Russ. J. Electrochem. (Engl. Transl.), 2006, vol. 42, pp. 836–846].

    Google Scholar 

  22. Zabolotskii, V.I., Sharafan, M.V., and Shel’deshov, N.V., Elektrokhimiya, 2008, vol. 44, p. 155 [Russ. J. Electrochem. (Engl. Transl.), 2008, vol. 44, pp. 141–146].

    Google Scholar 

  23. Zabolotskii, V.I., Sharafan, M.V., and Shel’deshov, N.V., Elektrokhimiya, 2008, vol. 44, p. 1213 [Russ. J. Electrochem. (Engl. Transl.), 2008, vol. 44, pp. 1127–1134].

    Google Scholar 

  24. Levich, V.G., Fiziko-khimicheskaya gidrodinamika, Moscow: Fizmatgiz, 1959 [Physicochemical Hydrodynamics (Engl. Transl.), Englewood Cliffs (NJ): Prentice-Hall, 1962].

    Google Scholar 

  25. Kharkats, Yu.I., Elektrokhimiya, 1985, vol. 21, p. 974.

    CAS  Google Scholar 

  26. Semushin, A.M., Yakovlev, V.A., and Ivanova, E.V., Infrakrasnye spektry pogloshcheniya ionoobmennykh materialov (Infrared Absorption Spectra of Ion-Exchange Materials), Leningrad: Khimiya, 1980.

    Google Scholar 

  27. Uglyanskaya, V.A., Chikin, G.A., Selemenev, V.F., and Zav’yalova, T.A., (Infrakrasnaya spektroskopiya ionoobmennykh materialov (Infrared Spectroscopy of Ion-Exchange Materials), Voronezh: Voronezh. Gos. Univ., 1989.

    Google Scholar 

  28. Umnov, V.V., Shel’deshov, N.V., Zabolotskii, V.I., Elektrokhimiya, 1999, vol. 35, p. 982 [Russ. J. Electrochem. (Engl. Transl.), 1999, vol. 35, pp. 871–878].

    Google Scholar 

  29. Zabolotskii, V.I., Shel’deshov, N.V., and Gnusin, N.P., Usp. Khim., 1988, vol. 57, p. 1403 [Russ. Chem. Rev. (Engl. Transl.), 1988, vol. 57, pp. 801–808].

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Sharafan.

Additional information

Original Russian Text © M.V. Sharafan, V.I. Zabolotskii, V.V. Bugakov, 2009, published in Elektrokhimiya, 2009, Vol. 45, No. 10, pp. 1252–1260.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharafan, M.V., Zabolotskii, V.I. & Bugakov, V.V. Electric mass transport through homogeneous and surface-modified heterogeneous ion-exchange membranes at a rotating membrane disk. Russ J Electrochem 45, 1162–1169 (2009). https://doi.org/10.1134/S1023193509100085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193509100085

Key words

Navigation