Skip to main content
Log in

Structure and electrokinetic study of nickel electrodeposition

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Electrodeposited layers of nickel show different growth characteristics depending on the composition of the electrolyte, namely the type of the anion, the presence or the absence of boric acid and the pH. These process parameters are examined in the present work in order to elucidate their influence upon the growth texture and the related surface morphology of the electrodeposits. The relationship between process and structure is investigated by studying the transient electrochemical behavior during deposition, in order to discriminate between different interface conditions corresponding to different growth modes. The observed preferred orientations can be in this way linked to different reactive species, which are assumed to be present at the surface, and to their stability. The correlation between kinetics and structure in nickel electrodeposition reported in the present work and the similar correlation found in cobalt electrodeposition suggest a rationalization of the growth modes of ECD inert metals, based on the correspondence between the transient Tafel parameter and the growth texture observed in defined conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Finch, G., Quarrel, A., and Wilman, H., Trans. Faraday Soc., 1935, vol. 31, p. 1051; Finch, G. and Sun, C., Ibid., 1936, vol. 32, p. 852; Finch, G. and Williams, A., Ibid., 1937, vol. 33, p. 564; Finch, G. and Yang, L., Discuss. Faraday Soc., 1947, vol. 1, p. 144; Finch, G., Z. Elektrochem., 1950, Bd 54, S. 457; Finch, G. and Layton, D., J. Electrodepositors’ Tech. Soc., 1951, vol. 27, p. 215.

    Article  CAS  Google Scholar 

  2. Pangarov, N., J. Electroanal. Chem., 1965, vol. 9, p. 70.

    Article  CAS  Google Scholar 

  3. Stranski, I.N. and Kaishev, R., Z. Physik. Chem., 1934, Bd 26, S. 100, 114, 312; Ann. Physik, 1935, Bd 23, S. 330; Physik Z., 1935, Bd 36, S. 393.

    Google Scholar 

  4. Fischer, H., Elektrolytische Abscheidung und Elektrokristallisation von Metallen, Berlin: Springer, 1954; Fischer, H., Electrochim. Acta, 1960, vol. 2, p. 50; Eichkorn, G., Schlitter F.W., and Fischer, H., Z. Phys. Chem., 1968, Bd 62, p. 1; Fischer, H., Angew. Chem. Int. Ed., 1969, vol. 8, p. 108; Plating, 1969, vol. 56, p. 1229; Electrodepos. Surf. Treat., 1972/73, vol. 1, p. 239, 319.

    Google Scholar 

  5. Reddy, A., J. Electroanal. Chem., 1963, vol. 6, p. 141.

    Article  CAS  Google Scholar 

  6. Reddy, A. and Ragopalayan, S., Ibid., 1963, vol. 6, p. 153, 159.

    Article  CAS  Google Scholar 

  7. Winand, R., Hydrometallurgy, 1992, vol. 29, p. 567.

    Article  CAS  Google Scholar 

  8. Cavallotti, P.L., Bozzini, B., Nobili L., and Zangari, G., Electrochim. Acta, 1994, vol. 39, p. 1123.

    Article  CAS  Google Scholar 

  9. Piontelli, R., J. Chim. Phys., 1949, vol. 46, p. 288; Zh. Elektrochem., 1951, vol. 55, p. 128.

    CAS  Google Scholar 

  10. Despić, A.R., Comprehensive Treatise of Electrochemistry, Vol. 7; Conway, B.E., Bockris, J. O’M., Yeager, E., Khan, S.U.M., and White, R.E., Eds, New York: Plenum, 1983, p. 474.

    Google Scholar 

  11. Gorbunova, K.M., Electrochim. Acta, 1965, vol. 10, p. 367.

    Article  CAS  Google Scholar 

  12. Epelboin, I., Froment, M., and Maurin, G., Plating, 1969, vol. 56, p. 1356.

    CAS  Google Scholar 

  13. Amblard, J., Froment, M., and Spyrellis, N., Surface Technol, 1977, vol. 5, p. 205.

    Article  CAS  Google Scholar 

  14. Amblard, J., Epelboin, I., Froment, M., and Maurin, G., J. Appl. Electrochem., 1979, vol. 9, p. 233.

    Article  CAS  Google Scholar 

  15. Amblard, J., Froment, M., Maurin, G., Spyrellis N., and Trevisan-Souteyrand, E., Electrochim. Acta, 1983, vol. 28, p. 909.

    Article  CAS  Google Scholar 

  16. Kollia, C., Spyrellis, N., Amblard, J., Froment M., and Maurin, G., J. Appl. Electrochem., 1990, vol. 20, p. 1241.

    Article  Google Scholar 

  17. Banerjee, B.C. and Goswami, A., J. Electrochem. Soc., 1959, vol. 106.

  18. Maurin, G. and Froment, M., Compt. Rend., 1966, vol. 263C, p. 981.

    Google Scholar 

  19. Vicenzo, A. and Cavallotti, P.L., Electrochim. Acta, 2004, vol. 49, p. 4079.

    Article  CAS  Google Scholar 

  20. Cavallotti, P.L., Gobbato, L., Nobili L., and Vicenzo, A., Proc. AESF SURIFIN 1999, Orlando: AESF INC., 1999, p. 325.

    Google Scholar 

  21. Harris, G.B., Phil. Mag., 1952, vol. 43, p. 113.

    Google Scholar 

  22. Mueller, M.H., Chernock, W.P., and Beck, P.A., AIME Trans., 1958, vol. 212, p. 39.

    Google Scholar 

  23. Piontelli, R., Poli, G., and Serravalle, G., Trans. Symp. on Electrode Processes, Yeager, E., Ed., New York: Wiley, 1959, p. 67; Piontelli, R., Electrochim. Metall., 1966, vol. 1, p. 5.

    Google Scholar 

  24. Argyriou, A. and Spyrellis, N., Trans. IMF, 1993, vol. 71, p. 83.

    CAS  Google Scholar 

  25. Karayannis, H.S., and Patermarakis, G., Electrochim. Acta, 1995, vol. 40, p. 1079.

    Article  CAS  Google Scholar 

  26. Cavallotti, P.L. and Vicenzo, A., Fundamental Aspects of Electrochemical Deposition and Dissolution, Landolt, D., Matlosz, M., and Sato, Y., Eds., PV 99-33, Pennington: The Electrochemical Society, 2001, p. 123.

    Google Scholar 

  27. JI, J., Cooper, W.C., Dreisinger, D.B., and Peters, E., J. Appl. Electrochem., 1995, vol. 25, p. 642.

    Article  CAS  Google Scholar 

  28. Cavallotti, P.L., Colombo, D., Ducati, U., and Piotti, A., Electrodeposition Technology Theory and Practice, Romankiw, L. and Turner, D.A., Eds., PV 87-17, Pennington: The Electrochemical Society, 1987, p. 429.

    Google Scholar 

  29. Vicenzo, A., Cavallotti, P.L., J. Appl. Electrochem., 2002, vol. 32, p. 743.

    Article  CAS  Google Scholar 

  30. Bard, A.J. and Faulkner, L.R., Electrochemical Methods, New York: Wiley, 1980, p. 249.

    Google Scholar 

  31. Kudryavtsev, N.T., Yarlykov, M.M., and Mel’nikova, M.M., Zh. Prikl. Khim., 1965, vol. 38, p. 545.

    CAS  Google Scholar 

  32. Hoare, J.P., J. Electrochem. Soc., 1986, vol. 133, p. 2491; Ibid., 1987, vol. 134, 3102.

    Article  CAS  Google Scholar 

  33. Abyaneh, M.Y. and Hashemi-Pour, M., Trans. IMF, 1993, vol. 72(1), p. 23.

    Google Scholar 

  34. Ives, A.G., Edington, J.W., and Rothwell, G.P., Electrochim. Acta, 1970, vol. 15, p. 1797.

    Article  CAS  Google Scholar 

  35. Nakahara, S. and Felder, E.C., J. Electrochem. Soc., 1982, vol. 129, p. 45.

    Article  CAS  Google Scholar 

  36. Tilak, B.V., Gendron, A.S., and Mosoiu, M.A., J. Appl. Electrochem., 1977, vol. 7, p. 495.

    Article  CAS  Google Scholar 

  37. Horkans, J., J. Electrochem. Soc., 1981, vol. 128, p. 45.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vicenzo.

Additional information

Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 6, pp. 771–783.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vicenzo, A., Cavallotti, P.L. Structure and electrokinetic study of nickel electrodeposition. Russ J Electrochem 44, 716–727 (2008). https://doi.org/10.1134/S1023193508060128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193508060128

Key words

Navigation