Skip to main content
Log in

Mesenchymal Stem Cells and Osteoblast Function: Investigating the Involvement of circGLIS2

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Osteoporosis (OP) is a prevalent physiological bone disorder that attribute to elevated bone absorption and disrupted bone formation. Accumulating evidence has reported that epigenetic modifications may participate in mechanisms of OP. In this work, we aimed at determining the expression pattern and effects of circular RNA GLIS2 on OP. The concentrations of circGLIS2, miR-214-3p, and Smad5 in clinical samples of OP patients and healthy donors were quantified by qRT-PCR. Human bone marrow stem cells (BMSCs) were stimulated with osteogenic medium to promote bone development. The protein expression of osteogenic biomarkers, such asosteocalcin (OCN) and osteopontin (OPN), were assessed with western blotting. The expression of circGLIS2 and Smad5 were decreased and miR-214-3p values was elevated in clinical specimens of OP patients in comparison with the healthy donors. The expression of circGLIS2 was notably elevated in BMSCs upon osteogenic differentiation. Knockdown of circGLIS2 notably suppressed the OPN and OCN levels, decreased the ALP activity and the Alizarin Red S staining. Overexpression of Smad5 and inhibition of miR-214-3p could recover the suppressed osteogenic differentiation that caused by circGLIS2 depletion. In conclusion, circGLIS2 sponges miR-214-3p to upregulate Smad5, the which enhanced osteogenic differentiation of the BMSCs. Our finding provided a potential novel target for the therapeutic strategies of OP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ensrud, K.E. and Crandall, C.J., Osteoporosis, Ann. Intern. Med., 2017, vol. 167, no. 3, pp. ITC17—ITC32.

    Article  PubMed  Google Scholar 

  2. Cotts, K.G. and Cifu, A.S., Treatment of osteoporosis, JAMA, 2018, vol. 319, no. 10, pp. 1040—1041.

    Article  PubMed  Google Scholar 

  3. Brown, C., Osteoporosis: staying strong, Nature, 2017, vol. 550, no. 7674, pp. S15—S17.

    Article  CAS  PubMed  Google Scholar 

  4. Arceo-Mendoza, R.M. and Camacho, P.M., Postmenopausal osteoporosis: latest guidelines, Endocrinol. Metab. Clin. North Am., 2021, vol. 50, no. 2, pp. 167—178.

    Article  PubMed  Google Scholar 

  5. Chen, Y.S., Lian, W.S., Kuo, C.W., et al., Epigenetic regulation of skeletal tissue integrity and osteoporosis development, Int. J. Mol. Sci., 2020, vol. 21, no. 14.

  6. Yang, Y., Yujiao, W., Fang, W., et al., The roles of miRNA, lncRNA and circRNA in the development of osteoporosis, Biol. Res., 2020, vol. 53, no. 1, p. 40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang, T.L., Shen, H., Liu, A., et al., A road map for understanding molecular and genetic determinants of osteoporosis, Nat. Rev. Endocrinol., 2020, vol. 16, no. 2, pp. 91—103.

    Article  PubMed  Google Scholar 

  8. Gao, M., Zhang, Z., Sun, J., Li, B., and Li, Y., The roles of circRNA-miRNA-mRNA networks in the development and treatment of osteoporosis, Front. Endocrinol. (Lausanne), 2022, vol. 13, р. 945310.

    Article  Google Scholar 

  9. Luo, Y., Qiu, G., Liu, Y., et al., Circular RNAs in osteoporosis: expression, functions and roles, Cell Death Discov., 2021, vol. 7, no. 1, p. 231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wen, J., Guan, Z., Yu, B., Guo, J., Shi, Y., and Hu, L., Circular RNA hsa_circ_0076906 competes with OGN for miR-1305 biding site to alleviate the progression of osteoporosis, Int. J. Biochem. Cell. Biol., 2020, vol. 122, р. 105719.

  11. Yu, L. and Liu, Y., circRNA_0016624 could sponge miR-98 to regulate BMP2 expression in postmenopausal osteoporosis, Biochem. Biophys. Res. Commun., 2019, vol. 516, no. 2, pp. 546—550.

    Article  CAS  PubMed  Google Scholar 

  12. Miller, P.D., Management of severe osteoporosis, Expert Opin. Pharmacother., 2016, vol. 17, no. 4, pp. 473—488.

    Article  CAS  PubMed  Google Scholar 

  13. Reid, I.R. A broader strategy for osteoporosis interventions, Nat. Rev. Endocrinol., 2020, vol. 16, no. 6, pp. 333—339.

    Article  PubMed  Google Scholar 

  14. Chen, W., Zhang, B., and Chang, X., Emerging roles of circular RNAs in osteoporosis, J. Cell Mol. Med., 2021, vol. 25, no. 19, pp. 9089—9101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, R., Wang, Y., Zhu, L., Liu, Y., and Li, W., Epigenetic regulation in mesenchymal stem cell aging and differentiation and osteoporosis, Stem Cells Int., 2020, vol. 2020, р. 8836258.

  16. Chen, X., Ouyang, Z., Shen, Y., et al., CircRNA_28313/miR‑195a/CSF1 axis modulates osteoclast differentiation to affect OVX-induced bone absorption in mice, RNA Biol., 2019, vol. 16, no. 9, pp. 1249—1262.

    Article  PubMed  PubMed Central  Google Scholar 

  17. He, T., Liu, W., Cao, L., et al., CircRNAs and lncRNAs in osteoporosis, Differentiation, 2020, vol. 116, pp. 16—25.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, J., Yang, R., Liu, R., et al., Circular RNA GLIS2 promotes colorectal cancer cell motility via activation of the NF-kappaB pathway, Cell Death Dis., 2020, vol. 11, no. 9, p. 788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Conidi, A., Cazzola, S., Beets, K., et al., Few Smad proteins and many Smad-interacting proteins yield multiple functions and action modes in TGFbeta/BMP signaling in vivo, Cytokine Growth Factor Rev., 2011, vol. 22, nos. 5—6, pp. 287—300.

    Article  CAS  PubMed  Google Scholar 

  20. Eivers, E., Demagny, H., and De Robertis, E.M., Integration of BMP and Wnt signaling via vertebrate Smad1/5/8 and Drosophila Mad, Cytokine Growth Factor Rev., 2009, vol. 20, nos. 5—6, pp. 357—365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dai, J., Li, Y., Zhou, H., Chen, J., Chen, M., and Xiao, Z., Genistein promotion of osteogenic differentiation through BMP2/SMAD5/RUNX2 signaling, Int. J. Biol. Sci., 2013, vol. 9, no. 10, pp. 1089—1098.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nahar-Gohad, P., Gohad, N., Tsai, C.C., Bordia, R., and Vyavahare, N., Rat aortic smooth muscle cells cultured on hydroxyapatite differentiate into osteoblast-like cells via BMP-2-SMAD-5 pathway, Calcif. Tissue Int., 2015, vol. 96, no. 4, pp. 359—369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, Q., Shen, P., Zhang, B., Chen, Y., and Zheng, C., Circ_0062582 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro by elevating SMAD5 expression through sponging miR-197-3p, Cells Tissues Organs, 2022, vol. 10, р. 1159. https://doi.org/10.1159/000525703

    Article  Google Scholar 

  24. Park, S.B., Park, S.H., Kim, N.H., and Chung, C.K., BMP-2 induced early bone formation in spine fusion using rat ovariectomy osteoporosis model, Spine J., 2013, vol. 13, no. 10, pp. 1273—1280.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Kang.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. Institutional research ethics committee of Zhengzhou Central Hospital Affiliated to Zhengzhou University approved the study (no. 202277) and certify that the study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki.

All participants have signed the informed consents.

CONSENT TO PARTICIPATE

All authors have their permission to participate.

CONSENT TO PUBLISH

All authors have permission to publish their work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Y., Mao, Y., Luo, F. et al. Mesenchymal Stem Cells and Osteoblast Function: Investigating the Involvement of circGLIS2. Russ J Genet 59 (Suppl 1), 81–89 (2023). https://doi.org/10.1134/S1022795423130069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423130069

Keywords:

Navigation