Skip to main content
Log in

Association study of genetic markers of schizophrenia and its cognitive endophenotypes

  • Human Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

A replicative analysis of associations of 15 SNPs located in the regions of 11 genes (TCF4, VRK2, NOTCH4, ZNF804A, AGBL1, RELN, ZFP64P1, KCNB2, CSMD1, CPVL, NRIP1) and three intergenic regions (SLCO6A1/LINCOO491, LOC105376248/LOC105376249, SPA17/NRGN) with schizophrenia was conducted in the Russian population of the Siberian region. These SNPs were previously identified in genome-wide association studies (GWAS) of schizophrenia and cognitive abnormalities. The present study confirmed associations of KCNB2 rs2247572, CSMD1 rs2616984, and intergenic rs12807809 located in SPA17/NRGN with schizophrenia. It was established that the frequency of the CSMD1 rs2616984 G/G genotype was higher in patients compared to the control group (OR = 1.73; CI: 1.14–2.62; р = 0.0337). The frequencies of the KCNB2 rs2247572 TT genotype (OR = 0.41; CI: 0.20–0.87; р = 0.0485) and intergenic rs12807809 CT genotype located in SPA17/NRGN (OR = 0.70; CI: 0.53–0.94; р = 0.0464) were significantly decreased in patients compared to the control group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. http://www.ncbi.nlm.nih.gov/pubmed.

  2. Mosolov, S.N., Some current theoretical problems of diagnostics, classification, neurobiology and treatment of schizophrenia: a comparison of foreign and domestic approaches, Korsakov J. Neurol. Psychiatry, 2010, vol. 6, pp. 4–11.

    Google Scholar 

  3. The World Health Report 2001—Mental Health: New Understanding, New Hope. http://www.who.int/whr/2001/en/.

  4. Stefansson, H., Ophof, R.A., Steinberg, S., et al., Common variants conferring risk of schizophrenia, Nature, 2009, vol. 460, no. 7256, pp. 744–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. McCarthy, S.M., McCombie, W.R., and Corvin, A., Unlocking the treasure trove: from genes to schizophrenia biology, Schizophr. Bull., 2014, vol. 40, no. 3, pp. 492–496.

    Article  PubMed  PubMed Central  Google Scholar 

  6. http://www.ebi.ac.uk/gwas.

  7. Golimbet, V.E., Korovaitseva, G.I., Brusov, O.S., et al., The functional state of the serotonergic system and the 5-HTTLPR polymorphism of the serotonin transporter gene in patients with schizophrenia, Mol. Biol. (Moscow), 2010, vol. 44, no. 2, pp. 223–227.

    Article  CAS  Google Scholar 

  8. Gareeva, A.E., Traks, T., Koks, S., and Khusnutdinova, E.K., The role of neurotrophins and neurexins genes in the risk of paranoid schizophrenia in Russians and Tatars, Russ. J. Genet., 2015, vol. 51, no. 7, pp. 683–694.

    Article  CAS  Google Scholar 

  9. Alfimova, M.V., Abramova, L.I., Aksenova, E.V., et al., Association between polymorphism of the neuregulin gene (NRG1) and cognitive functions in schizophrenia patients and healthy subjects, Korsakov J. Neurol. Psychiatry, 2011, no. 6, pp. 53–57.

    Google Scholar 

  10. Fedorenko, O.Yu., Rudikov, E.V., Gavrilova, V.A., et al., Association of (N251S)-PIP5K2A with schizophrenic disorders: a study of the Russian population of Siberia, Korsakov J. Neurol. Psychiatry, 2013, vol. 113, no. 5, pp. 58–61.

    Google Scholar 

  11. Stepanov, V.A., Bocharova, A.V., Saduakasova, K.Z., et al., Replicative study of susceptibility to childhoodonset schizophrenia in Kazakhs, Russ. J. Genet., 2015, vol. 51, no. 2, pp. 185–192.

    Article  CAS  Google Scholar 

  12. Purcell, S.M., Wray, N.R., Stone, J.L., et al., Common polygenic variation contributes to risk of schizophrenia and bipolar disorder, Nature, 2009, vol. 460, no. 7256, pp. 748–752.

    CAS  PubMed  Google Scholar 

  13. Shifman, S., Johannesson, M., Bronstein, M., et al., Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women, PLoS Genet., 2008, vol. 4, no. 2. e28

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cirulli, E.T., Kasperaviciute, D., Attix, D.K., et al., Common genetic variation and performance on standardized cognitive tests, Eur. J. Hum. Genet., 2010, vol. 18, no. 7, pp. 815–820.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Need, A.C., Attix, D.K., McEvoy, J.M., et al., A genome-wide study of common SNPs and CNVs in cognitive performance in the CANTAB, Hum. Mol. Genet., 2009, vol. 18, no. 23, pp. 4650–4661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O’Donovan, M.C., Craddock, N., Norton, N., et al., Identification of loci associated with schizophrenia by genome-wide association and follow-up, Nat. Genet., 2008, vol. 40, no. 9, pp. 1053–1055.

    Article  PubMed  Google Scholar 

  17. Sullivan, P.F., Lin, D., Tzeng, J.Y., et al., Genomewide association for schizophrenia in the CATIE study: results of stage 1, Mol. Psychiatry, 2008, vol. 13, no. 6, pp. 570–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weir, B.S., Genetic Data Analysis: Method for Discrete Population Genetic Data, Sunderland: Sinauer Associates, 1990.

    Google Scholar 

  19. Luykx, J.J., Bakker, S.C., Lentjes, E., et al., Genomewide association study of monoamine metabolite levels in human cerebrospinal fluid, Mol. Psychiatry, 2014, vol. 19, no. 2, pp. 228–234.

    Article  CAS  PubMed  Google Scholar 

  20. Sherva, R., Tripodis, Y., Bennett, D.A., et al., Genome-wide association study of the rate of cognitive decline in Alzheimer’s disease, AlzheimersDement., 2014, vol. 10, pp. 45–52.

    Google Scholar 

  21. Xu, W., Cohen-Woods, S., Chen, Q., et al., Genomewide association study of bipolar disorder in Canadian and UK populations corroborates disease loci including SYNE1 and CSMD1, BMC Med. Genet., 2014, vol. 15, no. 2. doi 10.1186/1471-2350-15-2

    Google Scholar 

  22. Rose, E.J., Morris, D.W., Hargreaves, A., et al., Neural effects of the CSMD1 genome-wide associated schizophrenia risk variant rs10503253, Am. J. Med. Genet._Part B, 2013, vol. 162, no. 6, pp. 530–537.

    Article  CAS  Google Scholar 

  23. Koiliari, E., Roussos, P., Pasparakis, E., et al., The CSMD1 genome-wide associated schizophrenia risk variant rs10503253 affects general cognitive ability and executive function in healthy males, Schizophr. Res., 2014, vol. 154, nos. 1–3, pp. 42–47. doi 10.1016/j.schres.2014.02.017

    Article  PubMed  Google Scholar 

  24. Steen, V.M., Nepal, C., Ersland, K.M., et al., Neuropsychological deficits in mice depleted of the schizophrenia susceptibility gene CSMD1, PLoS One, 2013, vol. 8, no. 11. e79501. doi 10.1371/journal.pone. 0079501

    Article  PubMed  PubMed Central  Google Scholar 

  25. Håvik, B., Le Hellard, S., Rietschel, M., et al., The complement control-related genes CSMD1 and CSMD2 associate to schizophrenia, Biol. Psychiatry, 2011, vol. 70, no. 1, pp. 35–42. doi 10.1016/j.biopsych. 2011.01.030

    Article  PubMed  Google Scholar 

  26. Shcherbakova, I.V., Activation of innate immunity in schizophrenia, Korsakov J. Neurol. Psychiatry, 2006, vol. 10, pp. 79–82.

    Google Scholar 

  27. Kraus, D.M., Elliott, G.S., Chute, H., et al., CSMD1 is a novel multiple domain complement-regulatory protein highly expressed in the central nervous system and epithelial tissues, J. Immunol., 2006, vol. 176, pp. 4419–4430.

    Article  CAS  PubMed  Google Scholar 

  28. Gendrel, M., Rapti, G., Richmond, J.E., et al., A secreted complement control-related protein ensures acetylcholine receptor clustering, Nature, 2009, vol. 461, pp. 992–996. doi 10.1038/nature08430

    Article  CAS  PubMed  Google Scholar 

  29. Stepanov, V.A., Bocharova, A.V., Marusin, A.V., et al., Replicative association analysis of genetic markers of cognitive traits with Alzheimer’s disease in the Russian population, Mol. Biol. (Moscow), 2014, vol. 44, no. 6, pp. 835–844. doi 10.7868/S0026898414060160

    Article  Google Scholar 

  30. Borghans, J.A., Beltman, J.B., and De Boer, R.J., Mhc polymorphism under host—pathogen coevolution, Immunogenetics, 2004, vol. 55, pp. 732–739.

    Article  CAS  PubMed  Google Scholar 

  31. Hancock, D.B., Romieu, I., Shi, M., et al., Genome-Wide association study implicates chromosome 9q21.31 as a susceptibility locus for asthma in Mexican children, PLoS Genet., 2009, vol. 5, no. 8. e1000623. doi 10.1371/journal.pgen.1000623

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rose, E.J., Morris, D.W., Fahey, C., et al., The effect of the neurogranin schizophrenia risk variant rs12807809 on brain structure and function, Twin Res. Hum. Genet., 2012, vol. 15, no. 3, pp. 296–303. doi 10.1017/thg.2012.7

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bocharova.

Additional information

Original Russian Text © A.V. Bocharova, V.A. Stepanov, A.V. Marusin, V.N. Kharkov, K.V. Vagaitseva, O.Yu. Fedorenko, N.A. Bokhan, A.V. Semke, S.A. Ivanova, 2017, published in Genetika, 2017, Vol. 53, No. 1, pp. 100–108.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocharova, A.V., Stepanov, V.A., Marusin, A.V. et al. Association study of genetic markers of schizophrenia and its cognitive endophenotypes. Russ J Genet 53, 139–146 (2017). https://doi.org/10.1134/S1022795417010033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417010033

Keywords

Navigation